Airborne Solar Induced Chlorophyll Fluorescence to Characterize Arctic Boreal Zone Phenology and Productivity

Darren Drewry, Christian Frankenberg, David Schimel, Nicholas Parazoo
SYNDONIA BRET-HARTE, Eugenie Euskirchen, Adrian Rocha, CHARLES MILLER
Ryan Pavlick

• **Objective 1**: Acquire CFIS data in ABoVE domain in summer 2017
 – Acquire data over systems with contrasting productivity
 – Maximize spatial coincidence with other optical sensors and radars
 – Sample active flux towers in the region

• **Objective 2**: Analyze CFIS SIF Level 2 retrievals to characterize gradients in ecophysiological activity as functions of variation in:
 – Canopy chemistry, photosynthetic capacity, chlorophyll & water contents (AVIRIS-NG)
 – Plant functional type
 – Canopy / Ecosystem Structure (LVIS)
 – Disturbance history
 – Subsurface hydrology

• **Objective 3**: Demonstrate the utility of high resolution SIF data to constrain simulated GPP estimates over flight transects.
 – Integrate SIF biochemistry into the Community Land Model (CLM)
 – Utilize relationships between SIF and GPP to constrain biochemical parameters, applying a SIF constraint on simulated GPP estimation.
• **Objective 1:** Acquire CFIS data in ABoVE domain in summer 2017
 – Acquire data over systems with contrasting productivity
 – Maximize spatial coincidence with other optical sensors and radars
 – Sample active flux towers in the region

• **Objective 2:** Analyze CFIS SIF Level 2 retrievals to characterize gradients in ecophysiological activity as functions of variation in:
 – Canopy chemistry, photosynthetic capacity, chlorophyll & water contents (AVIRIS-NG)
 – Plant functional type
 – Canopy / Ecosystem Structure (LVIS)
 – Disturbance history
 – Subsurface hydrology

• **Objective 3:** Demonstrate the utility of high resolution SIF data to constrain simulated GPP estimates over flight transects.
 – Integrate SIF biochemistry into the Community Land Model (CLM)
 – Utilize relationships between SIF and GPP to constrain biochemical parameters, applying a SIF constraint on simulated GPP estimation.
CFIS Overview

- Chlorophyll Fluorescence Imaging Spectrometer (CFIS), optimized for retrieving SIF
 - Pushbroom grating spectrometer
 - 11 degrees FOV
 - Spectral Range: 737 – 772 nm
 - ~2K spectral bands; ~2K spatial bands
 - High Spectral Resolution
 - <0.01nm FWHM; sampling ~0.017 nm/pixel
 - Signal-to-Noise Ratios exceeding 500

- Built for OCO-2 SIF validation
- Initial flight campaigns (engineering and science) in 2015, 2016
What is Solar Induced Fluorescence (SIF)?

- Solar Induced chlorophyll Fluorescence (SIF) is a direct by-product of photosynthesis
- SIF provides a unique dynamic proxy for gross primary production GPP
- SIF is only ~1-2% of continuum radiance

Retrieval approaches use filling-in of Fraunhofer lines (solar absorption features)
 - High spectral resolution allows SIF retrievals not affected by atmospheric interference (Frankenberg et al, 2011; Joiner et al, 2011)

\[
GPP = PAR \cdot fPAR \cdot \phi_p \\
SIF = PAR \cdot fPAR \cdot \phi_f \\
GPP = SIF \cdot \phi_p / \phi_f
\]
Reflectance

- Chlorophyll fluorescence (-)
- Solar induced fluorescence
- O₂ absorptions
- H₂O absorptions
- Fraunhofer lines

wavelength / nm

reflectance

- 0.35
- 0.30
- 0.25
- 0.20
- 0.15
- 0.10
- 0.05
- 0.00

Chlorophyll fluorescence (-)

- 0.6
- 0.5
- 0.4
- 0.3
- 0.2
- 0.1
- 0.0