Assessing drought impacts on western Canadian aspen forests

Climate Impacts on Productivity and Health of Aspen (CIPHA)

1. Canadian Forest Service (NoFC), Natural Resources Canada, Edmonton
2. Alberta Agriculture and Forestry, Edmonton
3. Meteorological Service of Canada, Environment Canada, Saskatchewan
4. University of British Columbia, Vancouver

Acknowledgements

This work was conducted through funding support from the Canadian Forest Service, the Meteorological Service of Canada, Parks Canada, the Government of Canada’s Climate Change Action Fund, the Program of Energy Research and Development (PERD), MBOI Management Ltd., Agriculture and AgriFood Canada (PFRA), Forest 2020, Action Plan 2000 on Climate Change, the National Sciences and Engineering Research Council of Canada, the Forest Research Institute for Climate and Atmospheric Research (FRI), and the Forest Fire Management and Assessment Program (FFMAP). We would like to acknowledge the competent assistance and support provided over the years by many people from various agencies.

References

An emerging science issue for the 21st century:
Is climate change leading to global increases in drought-induced forest decline?

Global overview led by Craig Allen, US Geological Survey

• Increasing concerns about decline of aspen forests across western North America
• Major causes of aspen decline
 - Drought
 - Tent caterpillar defoliation
 - Spring thaw-freeze events
 - Wood-boring insects
 - Fungal pathogens

Major role in carbon sequestration by Canada’s forests

• Increasing demand for wood products
• Expanding urban development on the edge of boreal forest

Trembling Aspen (Populus tremuloides)

- Most widespread tree in North America
- 2 billion tonnes of aspen biomass in the Canadian boreal forest
- Important both ecologically and commercially
- Major role in carbon sequestration by Canada’s forests
- Increasing concerns about decline of aspen forests across western North America

Highlights of results from the CIPHA study

- The drought of 2001-2002 was the worst in over a century across a large area.
- Massive aspen mortality resembling fire impacts was recorded across drought-affected portions of the aspen parklands in Saskatchewan & Alberta.
- The drought led to a collapse in the net increment of aspen biomass across the region based on tree-ring analysis & annual monitoring at 350 CIPHA plots (Hogg et al. 2008).
- A spatial analysis showed 45 million tonnes of dead biomass across the 110,000 km2 survey area where the drought was most intense (Michaelian et al. 2013).
- Regionally, stem damage by wood-boring insects increased following the drought.

Methods for assessing drought impacts on aspen forests

CIPHA ground plot network

Tower-based monitoring of CO2 uptake & release

Aerial survey of dieback

Remote sensing

Mapping aspen mortality using coarse-grained imagery (Hogg et al. 2010)

Mean aspen forest oxygen exchange at 144 CIPHA plots across western Canada

Incidence of wood-boring insects at 144 CIPHA plots

Changes in the CIPHA forest carbon balance

• The 2001-2002 drought has had a major impact on aspen forests in western Canada including massive dieback & mortality along the transition zone between the boreal forest and the prairie grassland.

• Regionally, this drought led to a 30% decrease in aspen productivity.

• Mortality increased following the drought and has remained high for many years following the end of the drought.

• The results are consistent with recent studies showing impacts of drought on NPP & multi-species tree mortality across large areas of the North American boreal forest.

• This work shows the value of using a multi-scale monitoring approach for early detection & reporting of climate-related impacts that have emerged as a concern for forests in many parts of the world

CIPHA web site at http://cfs.nrcan.gc.ca/projects/124

Contact: Ted Hogg (ted.hogg@canada.ca)