Hydrology & Permafrost WG

John Kimball (Chair, UMT),
Mark Carroll (GSFC),
Chris Derksen (Environment CN),
Mahta Moghaddam (USC),
Walt Oechel (SDSU),
Stan Wullschleger (ORNL),
Elchin Jafarov (Univ. CO, INSTARR),
Franz Meyer (ASF, UAF),
Donald McLennan (CHARS),
Michelle Walvoord, Jen Rover, Burke Minsley, Neal Pastick, Brian Ebel (USGS),
Jennifer Watts (UMT),
Peter Kirchner (NPS),
Oliver Sonnentag (Montréal Univ.),
Phil Marsh (Wilfrid Laurier Univ.),
Kevin Schaefer (NSIDC)
Torre Jorgenson (ABR Inc.)
Matthew Whitley (UAF)
Jon Gamon (Univ. Alberta)
Institutional Collaborations & Outreach

• Federal or state agencies
 – Multi-agency representation on HPWG: NASA, DOE, USGS, NPS, Env. CN, CHAR
 – Leverage regional monitoring networks (e.g. USArray, USCRN), infrastructure & outreach
 – Science value-added, including data products development, Cal/Val & process studies

• Local communities and Native groups
 – Local outreach from individual projects to communicate science objectives and findings
 – Outreach through HPWG member agencies & infrastructure
 – Opportunities to create “indicator” maps to aid land managers/community leaders
 – Other groups, activities TBD

• Other stakeholder organizations
 – Interagency Arctic Research Policy Committee (IARPC) Collaborations
 – Exchange for Local Observations and Knowledge of the Arctic (ELOKA)
 – Alaska Landscape Conservation Cooperative (ALCC)
 – Imiq Hydroclimate data portal
 – Coordinate activities with ABoVE Stakeholder Engagement & Public Outreach Working Group (Larson)
HPWG Science Objectives

- Improve understanding of processes controlling changes in distribution and properties of permafrost and hydrologic systems, including spatial/temporal patterns and controls on:
 - Non-frozen season timing & duration
 - Active layer depth, permafrost thermal profile & thermokarst activity
 - Surface soil moisture, open water inundation and lake area
 - Snowcover properties & distribution

- Investigate how recent changes in non-frozen season, active layer depth and surface hydrology are influencing vegetation greening/browning patterns, land-atmosphere carbon exchange, animal habitat & migration, transportation networks & ecosystem services

- Develop HPWG Action Plans to promote integrated data collection and analyses for the ABoVE domain

- Identify opportunities for data compilations and “big-picture” meta-analyses; this will require interacting with other WGs and research communities outside of ABoVE
Field Studies

![Map of study sites](above.nasa.gov)

Field Measurements

<table>
<thead>
<tr>
<th>Active Layer</th>
<th>Relative Humidity</th>
<th>Lake Area Thickness</th>
<th>Organic Layer Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temp</td>
<td>Stream Flow</td>
<td>Precip.</td>
<td>NO$_3^-$ Isotopes</td>
</tr>
<tr>
<td>Soil Temp</td>
<td>Stream/Lake Temp</td>
<td>Snow Depth</td>
<td>H2O Isotopes</td>
</tr>
<tr>
<td>Soil Matric Potential</td>
<td>pH/Salinity</td>
<td>SWE</td>
<td>GPR</td>
</tr>
<tr>
<td>Pore Water EC</td>
<td>DOC/DIC</td>
<td>Surface Albedo</td>
<td>NMR</td>
</tr>
<tr>
<td>Water Table Depth</td>
<td>Aquatic CH$_4$</td>
<td>Solar Radiation</td>
<td>ERT</td>
</tr>
</tbody>
</table>

above.nasa.gov @NASA_ABoVE
Cross-WG Synergies

• Synergies with other WGs:
 – Coordinated modeling, parameterization, validation & data products
 \((Modeling\ Framework\ &\ Comparisons)\)
 – Wildlife impacts from changing snow cover, winter thaw events & surface flooding
 \((Wildlife\ &\ Ecosystems)\)
 – Fire disturbance interactions with surface wetting/drying trends, altered snow regimes
 & NF seasons \((Fire\ Disturbance)\)
 – Impacts of changing surface hydrology, permafrost & ALD dynamics on NEP, C exchange
 & storage \((Carbon\ Dynamics)\)

• Data gaps / needs:
 – Integrated field data collection of critical HP variables (e.g. ALD, SM, ST, Snow)
 – Lateral movement of surface/sub-surface water & materials (DOM, C species, N, sediment)
 – Lake & river ice phenology, incl. properties, timing, duration, trends & monitoring at
 relatively fine \((<=100m\ Res.)\) spatial scales
 – Finer scale spatial Info. on snow cover properties (structure, depth, density, SWE) &
 regional snow monitoring
 – Comprehensive water budget characteristics (P, ET, Q, storages)
 – Coordination with other research activities & local knowledge: NASA Arctic-Colors
 \((Arctic-Coastal\ Land\ Ocean\ inteRactions)\) campaign; The Arctic Landscape Conservation
 Cooperative (ALLC); PaLEON \((PaleoEcological\ Observatory\ Network)\); The Interagency
 Arctic Research Policy Committee (IARPC)
Space/Airborne Remote Sensing

- Data products will target freeze/thaw (FT), active layer depth or thickness (ALD, ALT), thermokarst features, water table depth (WTD) surface water inundation, lake dynamics, soil moisture (SM), and snow properties.

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Spatial Extent</th>
<th>Temporal Coverage</th>
<th>Spatial Res.</th>
<th>Sensors Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Freeze/Thaw, PF and Active Layer Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimball-04</td>
<td>FT Trend and Anomaly Maps</td>
<td>ABoVE Domain</td>
<td>1980-2017</td>
<td>6; 12; 25-km</td>
<td>AMSR; SMMR; SSMI/S; SMOS; SMAP SMMR; SSMI/S; MODIS LST</td>
</tr>
<tr>
<td>Kimball-04</td>
<td>Annual ALD Maps</td>
<td>ABoVE Domain</td>
<td>2003-2009</td>
<td>25-km</td>
<td>SMMR; SSMI/S; MODIS LST</td>
</tr>
<tr>
<td>Striegl-01</td>
<td>Static ALD; sub-surface PF Maps</td>
<td>Alaska; Regional</td>
<td>2011</td>
<td>30-m</td>
<td>Landsat; NIAP; G-LiHT; Leica ALS60</td>
</tr>
<tr>
<td>Schaefer-03</td>
<td>Surface Subsidence; ALT Maps</td>
<td>Sub-region, North Slope</td>
<td>1991-2010</td>
<td>30; 100-m</td>
<td>ERS-1/2; ALOS PALSAR</td>
</tr>
<tr>
<td>Moghaddam-03</td>
<td>ALD; WTD; SM; OLT Maps</td>
<td>Alaska Transects</td>
<td></td>
<td>15; 90-m</td>
<td>AirMOSS; UAVSAR</td>
</tr>
<tr>
<td>Frost-01</td>
<td>Thermokarst Maps</td>
<td>YK Delta Region</td>
<td></td>
<td></td>
<td>AVHRR; SSM/I; MODIS; Landsat; NGA; Lidar?</td>
</tr>
<tr>
<td>Loboda-03</td>
<td>ALD; Soil Temp Maps</td>
<td>Regional</td>
<td></td>
<td></td>
<td>Landsat</td>
</tr>
<tr>
<td>Wullschleger-01</td>
<td>Ground Ice; ALT; Soil Thermal Maps</td>
<td>Barrow; Seward Pen.</td>
<td></td>
<td></td>
<td>Landsat, etc.</td>
</tr>
<tr>
<td>Natali-01</td>
<td>Multi-scale FT Maps</td>
<td>Regional</td>
<td></td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>Surface Water Distribution & Soil Moisture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll-01</td>
<td>Lake Extent & Change Maps</td>
<td>Alaska & Canada</td>
<td>1991; 2001; 2011</td>
<td>30-m</td>
<td>Landsat; MODIS</td>
</tr>
<tr>
<td>Kimball-04</td>
<td>Surface Inundation Maps</td>
<td>ABoVE Domain</td>
<td>2003-2017</td>
<td>25; 5; 1-km</td>
<td>AMSR</td>
</tr>
<tr>
<td>Kimball-04/Moghaddam-03</td>
<td>Soil Moisture Validation Maps</td>
<td>Regional</td>
<td>2015</td>
<td>9-km; 15, 90-m</td>
<td>SMAP; AirMOSS; UAVSAR SMMR; Soil Moisture Validation Maps; Regional</td>
</tr>
<tr>
<td>Meyer-01</td>
<td>Lake Change Maps; Ice Hazard Maps</td>
<td>Regional</td>
<td></td>
<td></td>
<td>ALOS PALSAR; ALOS-2; SAOCOM; NISAR</td>
</tr>
<tr>
<td>Cook-B-02</td>
<td>Wetland/Surface Water Change Maps</td>
<td>Regional</td>
<td></td>
<td></td>
<td>Landsat; HyspIRI</td>
</tr>
<tr>
<td>Loboda-03</td>
<td>Drainage & Soil Moisture Maps</td>
<td>Regional</td>
<td></td>
<td></td>
<td>Landsat; InSAR</td>
</tr>
<tr>
<td>Bourgeois-Chavez-01</td>
<td>SM Maps (pre & post burn); ALD</td>
<td>Great Slave Lake Region</td>
<td>2015-2018</td>
<td></td>
<td>PALSR; Radarsat-2; ERS; Sentinel; SMOS; SMAP; Landsat; DigitalGlobe</td>
</tr>
<tr>
<td>Snow Cover Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prugh-01</td>
<td>SCE; Depth; Hardness Maps</td>
<td>Wrangell St. Elias Region (Kennecott)</td>
<td></td>
<td>100-m</td>
<td>TBD</td>
</tr>
<tr>
<td>Loboda-03</td>
<td>SCE; Onset; Duration Maps</td>
<td>Regional</td>
<td></td>
<td>1-km</td>
<td>Landsat; MODIS; ERS-1/2; Radarsat-1/2; ALOS PALSAR; ENVISAT</td>
</tr>
<tr>
<td>Kimball-04</td>
<td>Snowpack Melt Maps</td>
<td>Regional</td>
<td>1979-2016</td>
<td>25-km</td>
<td>AMSR; SMMR; SSMI/S</td>
</tr>
</tbody>
</table>

Text in blue indicates airborne
Airborne Remote Sensing

Existing airborne remote sensing included in HPWG projects:

• **AirMOSS P-; UAVSAR L-band** (Moghaddam-03; Kimball-04)
 - detect seasonal ALD, SM, WTD, organic layer depth
 - data used as inputs in biogeochemical models (carbon flux maps)

• **HyspIRI** (Cook-B-02)
 - wetland/surface water change maps
 (mapping wetland species CH$_4$ emission control factors?)

• **NIAP; Leica ALS60** (Striegl-01; Frost-01)
 - thermokarst features, ALD, sub-surface PF features, landscape physical properties influencing hydro. & PF processes

• **G-LiHT** (Striegl-01)
 - detecting landscape physical properties influencing hydro. & PF properties

• Trail Valley Creek (NWT) airborne radar campaigns targeting SWE (Chris Derksen)

• NGEE and CHARS (TBD)
Modeling

- **Datasets produced:** HPWG modeling activities will provide maps of key landscape indicators and parameters for SM, WTD, surface inundation, PF & lake ice properties, thermokarst activity, snow extent & characteristics (others TBD)

- **Models identified:** InSAR FZN Ground, ReSALT, SnowModel, SUTRA, PFLOTRAN, ATS, ED, TEM, ACME/ALM, CanFIRE, TCF-PWBM, various statistical approaches

 The HPWG has started a model table list. This can be found under ABoVE Google Docs.

- **Model input data:** (wide range of spatial/temporal res.) satellite & airborne RS, gridded surface met & in situ measurements

- **Data gaps/needs:** Airborne P- & L-band retrievals across project and flux tower sites; Airborne LiDAR and HF-radar along snow transects; Winter L-band SAR at select lake sites; Joint LiDAR, HyspIRI/AVIRIS+MASTER, airborne SAR and CARVE CO$_2$ & CH$_4$ retrievals at ABoVE core sites; Pre-ICESat-2 retrievals at ABoVE core sites; representation in YK Delta
Completed AIP Input & Objectives for ABoVE 2A

- An initial AIP draft has been produced by HPWG members
- The following actions targeted during the 2A meeting:

 Mature draft:
 - field measurements table (additional input)
 - field measurement location maps (spatial coordinates needed)
 - expected datasets table (additional input)
 - expected model(s) table (additional input)

 Identify:
 - timing & synergies between/among WG projects & HPWG members
 - any data gaps/needs not yet included in draft AIP
 - opportunities for “big-picture” meta-analyses and data synthesis
 - opportunities for coordinated data sharing and community outreach

 Draft:
 - plans/requests for coordinated airborne observations (with C. Miller)