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Emergent themes
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* Post-disturbance recovery

* How greening / browning trends are related to wildfires, pests, climate, and forest demographics
* Interactions between changing vegetation, permafrost, and hydrology
* Linking forest structure to function
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Landscape-Scale Histories and Active Monitoring of Disturbance, Seasonality and

Greenness Trends for ABoVE from Landsat

Curtis Woodcock, Mark Friedl, Damien Sulla-Menashe, Jonathan Wang, Oliver Sonnentag, Eli Melaas, Yingtong Zhang, Yetianjian Wang, Shijuan Chen
Boston University, Dept. of Earth and Environment and Université de Montréal, Dept. de Géographie

All products are annual (1984-2014), 30 m resolution
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« Ongoing, preliminary results
All products depend on disturbance detection from CCDC
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Disturbance Type
1985-2013
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forest annual change
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Massey et al (Forthcoming)
Goetz-01 and Rogers-02 projects
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Research Institute
/" Bourgeau-Chavez TE-2014

Circa 2007 Peatland/Wetland/Upland Map
— 13,677,119 km? mapped

— Region of 2014-15 wildfire affected areas
around Great Slave Lake

Based on: Field data and Multi-season SAR
and Landsat

— 9,943 training /2,149 validation polygons

— 0.2 ha minimum mapping unit

— All classes > 82% user accuracy, except
swamp (73%)

— Available on DAAC soon & Map extension
under new project (French TE-2018)
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Poster 2-43: Composition and structure of browning and greening forests in interior Alaska
(Fiore, N.M., Goulden, M.L., Czimczik, et al)

of 4 in Methods:
3 { ; o | o Landsat NDVI time series (browning/greening) paired with

forest surveys in interior Alaska
~* Sites sample both burned & unburned areas showing either
browning or greening

- Results:
. * Recent burns a large driver of NDVI trends (left image)

e Burns after 2010= strong browning (black polygon)
e Burns before 1990= strong greening (blue)
* Unburned areas show weaker NDVI trends (bottom)

e Mid succession Deciduous to Evergreen= Browning
e Late succession Evergreen to Deciduous= Greening

Conclusions:
* Browning and greening occur

naturally with fire, recovery,
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Recovery of Vegetation Cover in Burned Ecosystems of Interior Alaska

CASA Team Report-

ARCTIC BOREAL VULNERABILITY EXPERIMENT

H . ° AR gy r _7
Derived from a Combination of ABoVE-AVIRIS and Landsat Imagery ﬁ’”{ﬁ,‘
Author and Contact: Christopher Potter, NASA Ames Research Center, chris.potter@nasa.gov o2 ‘

Background: In the summer of 2015, hundreds of fires burned across the interior forests of Alaska, resulting in the second highest acreage burned for the
state in a single year. To better understand how vegetation attributes and disturbances interact in the ABoVE study domain, surface reflectance measured by
the AVIRIS-NG instrument (in flights between June and August of 2017 and 2018) were collected at approximately 5-meter resolution near the height of
recent growing seasons. One AVIRIS flight line was collected over high burn severity (HBS) areas of the Blind River Fire of 2015 and the Bering Creek Fire of
2000 near the confluence of the Yukon River and Montana Creek, 60 km west of Tanana. The full hyperspectral reflectance image (425 bands at 5 nm
intervals) was classified into seven cover classes using Spectral Angle Mapping (SAM) algorithms (Kruse et al., 1993). These classes were Evergreen forest,
Deciduous Forests, Shrub, Herbaceous wetland, Barren, Open Water, and HBS. Endmember locations for the SAM classification were derived from Landsat
land cover (NLCD, 2011) at 30-m resolution for these same (unburned) classes. Burn severity classes from the MTBS project (Eidenshink et al., 2007), derived
from the relative difference normalized burn ratio (RANBR) of Landsat NIR and SWIR bands, were overlaid to assess changes in vegetation cover from AVIRIS.

Results: Within the HBS class areas of the Blind River Fire of 2015, the 2017 AVIRIS classification predicted a predominance of HBS and Barren cover, with
sparse recovery of herbaceous vegetation in low burn severity (LBS) areas. Within the HBS class areas from 2000 burns, the 2017 AVIRIS classification
predicted a predominance of herbaceous vegetation recovery and some deciduous tree cover, and sparse recovery of evergreen tree cover in LBS areas.

AVIRIS Vegetation Cover Classification and Burn Area Boundaries of the Blind River Fire of 2015 and the Bering Creek Fire of 2000

Legend

Details of HBS areas from the year 2000
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Using long-term NDVI and field observations to model forest demographics (Goetz TE 2014)

High mortality

Declining vigor

Early warning signals of tree mortality 10
are evident in long-term NDVI time
series (Rogers et al., 2018 GCB)
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To develop predictive models, we
aggregated data from 13 re-
measured inventories (~20k plots).
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l|||||||||| Preliminary predictive models of
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Permafrost Thaw and Wetland Vegetation Dynamics
Scotty Creek, NWT: 1970’s, 2008 — 2015

Laura Chasmer?!, Chris Hopkinson?!, William Quinton?

lUniversity of Lethbridge, Lethbridge AB Canada
2Wilfrid Laurier University, Waterloo ON Canada

Laura.chasmer@uleth.ca; c.Hopkinson@uleth.ca; wquinton@wlu.ca
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Increased Rate of Loss after ~1998 at Scotty Creek

Classification of plateau areas using
air photos and time series lidar data 40

to determine changes over time ©0.19% peryr

—~ 35 * N\
Hydro-climate changes: :g_ \
Reduced snow cover period: 3 30 N
~50 days shorter (from 1970s); S
~30 days shorter (2000s +) 5_‘2 "
c.
Earlier fall snowfall & spring thaw Forecast/
. = 20 hindcast
Increased air temperature (~2°C) q 08
R-Sq(adj) 99.5%
Shift in response corresponds with I3 1970 1980 1990 2000 2010 2020
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Map of Permafrost thaw 2008 minus 2015 (subset)

What can be done with lidar
data

Permafrost plateaus with loss
determined from time series
lidar data

Vertical + horizontal loss of
discontinuous permafrost along
south-facing and west facing
edges

Has implications for
connectivity, hydrology
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Results from Chasmer and Hopkinson 2016 GCB; Activities are ongoing




Map of Wetland Vegetation Change
2008 to 2015 (larger subset)

Vegetation height changes from time series lidar data
for small sub-area

Plateaus in black

Increased shrubification of fen (increase in height)
from 2008 to 2015; reduced height of shrubs/trees
possibly associated with mortality within recently
connected bogs
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Objective - Characterize forest-tundra ecotone (FTE) structure:

o Developed novel remote sensing approach for characterizing treeline structure
(Meddens et al., 2018).

Objective - Linking FTE structure and function:

o Variability in microstructure modulates photosynthetic functioning of small-stature
white spruce (Maguire et al., 2019).

o Lidar-derived tree height reveals treeline demography and associated C storage (Jensen
et al., in prep).

o Simple light modeling approach improves interpretation of chlorophyll fluorescence
(Maguire et al., in prep).

o Results revealed no significant (p>0.05) differences in photosynthetic characteristics
between high and low canopy needles (Schmiege et al., in prep).



PRI

* Objective - Assess FTE vulnerability and resilience:

o PRI time series of fall phenological transitions can help our understanding of the FTE
response to climate change (Eitel et al., 2019).

o PRI time series showed to track intra-seasonal radial growth dynamics of white spruce

(Eitel, Griffin et al., soon to be submitted)(see poster session for more details):
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UVAFME - individual tree-based forest model

Simulates individual tree establishment, growth, and
mortality based in response to the environment,
climate, competition, light, and disturbances

UVAFME

Also simulates soil moisture, permafrost,

decomposition, and wildfire dynamics in response to
climate and vegetation drivers

Increasing biomass at northern range limits
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Synthesis activities
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