Mechanisms linking solar-induced fluorescence and vegetation reflectance to boreal forest productivity: Phase 2 project
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Introduction ‘ ‘ Methods

A multi-scale approach to understand the ecophysiological and physical mechanisms linking
SIF, vegetation reflectance, and pigment composition to Boreal forest productivity.

The Boreal forest has experienced a widespread transformation in ecosystem
structure and function that will only amplify under global climate change.
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Data from a CFIS overflight in 2017 over the Mackenzie River delta shows the spatial patterns of SIF, with
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understanding of both the temporal and

. : . TROPOMI SIF data showing the green-up of the ABoVE domain during the spring onset of photosynthesis in 2018.
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Weekly data at a 3 x 7 km resolution will dramatically increase our ability to interpret SIF and GPP seasonality.
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