

Broad spatial comparison of CH₄ emission patterns in the Mackenzie Delta, NWT using airborne eddy covariance and hyperspectral visible/infrared imaging spectroscopy

 Jet Propulsion Laboratory Clayton D. Elder¹, Katrin Kohnert², Andrei Serafimovich³, Andrew K. Thorpe¹, David R. Thompson¹, Torsten Sachs³, Charles E. Miller¹
Scholar Serafimovich³, Andrew K. Thorpe¹, David R. Thompson¹, Torsten Sachs³, Charles E. Miller¹
Scholar Serafimovich³, Andrew K. Thorpe¹, David R. Thompson¹, Torsten Sachs³, Charles E. Miller¹
Scholar Serafimovich³, Andrew K. Thorpe¹, David R. Thompson¹, Torsten Sachs³, Charles E. Miller¹
Scholar Serafimovich³
Scholar Sera ¹Jet Propulsion Laboratory, California Institute of Technology, ²Leibniz Institute for Freshwater Ecology and Inland Fisheries, ³GFZ Hemholtz Centre Potsdam

Motivation

Arctic regions are warming faster than any other region, accelerating permafrost thaw. Natural CH₄ emissions are likely to increase as consequence, constituting a positive feedback to further thaw. Despite ongoing efforts, considerable uncertainties remain in our ability to forecast arctic CH₄ emissions into the warmer future with emissions estimates varying by two orders of magnitude by 2100¹. Here we compare two complimentary advances for observing Arctic CH₄ on unprecedented scales: NASA JPL's Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and the AWI/GFZ AirMeth. Leveraging fine-scale AVIRIS-NG hotspot detection against the **broad spatial fluxes observed by AirMeth** we elucidate CH_4 emission patterns from process-level to landscape scales.

ABoVE Study Domain

Methodology **)** AirMeth Airborne Eddy Covariance

The AirMeth system observes CH₄ flux via airborne eddy covariance. Low altitude flights and repeat passes allow for flux calculation at a resolution of 100m across several 1000km². Surveys conducted in 2012 and 2013 mapped CH₄ fluxes in the M. Delta and revealed the influence of strong geologic seeps in the region's total emissions².

2) AVIRIS-NG[']Column CH₄

AVIRIS-NG detects absorption of reflected solar SWIR radiation by and CH_4 in the atmospheric column and determines the excess CH_{4} concentration above background levels³. Images of enhanced CH_4 are produced at **5m resolution**. In July 2017, the Mackenzie Delta was mapped, producing a 5,000 km^2 mosaic of > 320,000,000 individual CH₄ observations.

GFZ

Helmholtz Centre **Potsdam**

3) Spatial characterization Leveraging the space & time differences in the two observation strategies, we characterize and map CH₄ emission modes into 4 distinct conditions based on the relationship between AV-NG & AirMeth observations.

ABoVE Scaling Diagram

Conclusions and Future Work

- 1000s of CH₄ enhancements observed via AVIRIS-Temporal synchronization AVIRIS-NG and OŤ NG (~1% of survey area) AirMeth in 2019 and 2020
- CH_{A} enhancements related to typical delta Apportionment of geologic vs. ecologic CH₄ fluxes wetlands, thermokarst features, and regions of Relate CH₄ emissions to permafrost conditions and known fossil fuel exploration and CH₄ seepage vegetation.
- Conceptual framework accurately represented areas of known geologic CH₄ seepage

References and Acknowledgements

¹Schneider Von Deimling et al. *Biogeosciences* (2015). ²Kohnert et al. *Scientific Reports* (2017). Thompson et al. *Atmos. Meas. Tech.* (2015). We thank Winston Olson Duvall and the AVIRIS team for assistance with data processing. ©2019 All Rights Reserved

Helmholtz Centre Potsdam

• Scale fluxes across ecological domains and to the broader Arctic