Why Prairie snow?

- Prairies cover almost 1/3 of the Earth's land surface globally
 - important for agriculture, water management, flooding concerns, energy & carbon cycle interactions, ecological issues, etc.
- Low stature vegetation, wind redistribution, subtle topography, rapidly changing conditions, and shallow snow create unique snow heterogeneity

Winter 2021 planned activities: local-scale campaign at CARC, MT

• UAV Lidar & albedo, hyperspectral, UAVSAR flights, ground meteorology, snow, & soil

Key questions to discuss (not limited)

- 1. What are the current gaps in remote sensing of prairie snow?
 - Impact of substrate characteristics (vegetation, soil composition & moisture, and freeze-thaw state) on remote sensing techniques
 - Characterizing spatial heterogeneity of snow (especially wind-driven redistribution, sublimation)
 - Rapidly changing conditions (metamorphism, wet snow, etc.)
- 2. What sensors might be beneficial (shallow, transitional snow) esp. path to space?
 - L-band InSAR, Lidar, multi-band SAR/radiometer, hyperspectral, Gamma radiation, SfM, others?
- 3. Which opportunities/collaborations should we be aware of?
 - Agricultural & ecological communities, Canadian agencies & universities, flood forecasters, others?
- 4. What do we want to achieve, and when?

3 Mar 2017 WV2 Color Image (2m) 10 Jul 2017 WV2 False-Color (2m)

2016 NLCD (30m)

2021 SnowEx Prairie Activities

Primary Objectives/Goals:

- 1. Characterize the **spatial heterogeneity of snow** distribution due to wind, landscape, sublimation, soil properties in a prairie environment
 - Scales at which processes dominate
 - Ability of RS techniques to characterize spatial distribution
- 2. Quantify the accuracy and uncertainty in SWE retrievals from Lband InSAR in a Prairie environment
 - Shallow snow, wet snow?
 - Quantifying & distinguishing water stored as snow vs. in soil column
- 3. Assess the **requirements of a prototype cal/val Prairie site** to support future aircraft and satellite missions.
 - Instrumentation/observations?

Central Agricultural Research Center (CARC)

2021 SnowEx Prairie Activities

Current plans:

- <u>CARC in Moccasin, MT</u>: long-term agricultural research station
- 1 km square study domain
- Periodic UAV Lidar, albedo, surface temp. flights (approx. 7 total)
 - Portable hyperspectral
- 4(?) UAVSAR airborne flights
 - Nearby gamma flights
- Ground stations (4 satellite & 1 central)
 - <u>At all locations</u>: Air temp., relative humidity, wind, soil moisture & temperature (3 depths), snow depth, skin temp., cameras
 - <u>At single location</u>: precipitation (heated, screened), SWE scale, temp. & RH (2 levels), 4-way net radiation, snow temperature profile, pressure, cosmic ray sensor

Central Agricultural Research Center (CARC)

1 - Thoughts about the sampling strategy?

 Is there anything that you think is missing or should be done differently to address this year's campaign objectives?

2 - In the next few years, what do we want to achieve, and when?

- e.g. if we have a 2022 prairie campaign, ...
- What objectives/activities/gaps are missing/essential?
 - Accuracy of other remote sensing techniques in prairie (e.g. multi-band SAR/radiometer)?
 - Impact of substrate characteristics (vegetation, soil composition & moisture, and freezethaw state) on snow depth or SWE from remote sensing techniques?
 - Impact of grain size/depth hoar, ice lenses on remote sensing techniques how much does vertical heterogeneity matter?
 - How to measure wet snow?
 - Scaling issues?
 - Others?

3 - Is anyone already doing work in the Prairies that we should be aware of?

- Which opportunities/collaborations should we be aware of?
 - Canadian agencies & universities
 - Agricultural & ecological communities
 - Flood forecasters
 - Airports?
 - Others?

4 - What are the modeling needs that should be addressed with a Prairie campaign?