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CABLE	 Yiqi	Luo,	Oklahoma	University,	USA	 [Wang	et	al.,	2010]	
CLASS-CTEM	 Altaf	Arain,	McMaster	University,	Canada	 [Huang	et	al.,	2011]	

CLM4	 Charles	Koven,	LBNL,	USA	 [Koven	et	al.,	2015]	
CLM4-VIC	 Maoyi	Huang,	PNNL,	USA	 [Li	et	al.,	2011]	
DLEM	 Hanqin	Tian,	Auburn	University,	USA	 [Tian	et	al.,	2014]	

DVM-DOS-TEM	 Hélène	Genet,	University	of	Alaska	Fairbanks,	USA	 [Euskirchen	et	al.,	2009]	
ecosys	 Robert	Grant,	University	of	Alberta,	Canada	 [Grant	et	al.,	2009]	

GTEC	 Dan	Ricciuto,	ORNL,	USA	 [Ricciuto	et	al.,	2011]	
Hyland	 Joshua	Fisher,	NASA	JPL,	USA	 [Levy	et	al.,	2004]	

ISAM	 Atul	Jain,	University	of	Illinois	at	Urbana-Champaign,	
USA	

[Jain	and	Yang,	2005]	

JeDI	 Ryan	Pavlick,	NASA	JPL,	USA	 [Pavlick	et	al.,	2013]	

JULES	 Anna	Harper,	University	of	Exeter,	UK	 [Best	et	al.,	2011]	
LPJ-GUESS	 Ben	Smith	&	Paul	Miller,	Lund	University,	Sweden	 [Smith	et	al.,	2001]	

LPJ-wsl	 Ben	Poulter,	Montana	State	University,	USA	 [Sitch	et	al.,	2003]	
MC2	 Dominique	Bachelet,	Conservation	Biology	Institute,	

USA	

[Peterman	et	al.,	2014]	

Noah-MP	 Zong-Liang	Yang,	University	of	Texas,	USA	 [Niu	et	al.,	2011]	
ORCHIDEE	 Philippe	Ciais,	LSCE,	France	 [Krinner	et	al.,	2005]	

SiB3	 Ian	 Baker	 &	 Katherine	 Haynes,	 Colorado	 State	
University,	USA	

[Baker	et	al.,	2008]	

SiB4	 Ian	 Baker	 &	 Katherine	 Haynes,	 Colorado	 State	
University,	USA	

[Baker	et	al.,	2008]	

SiBCASA	 Kevin	Schaefer,	NSIDC,	USA	 [Schaefer	et	al.,	2008]	
SSiB	 Yongkang	Xue,	UCLA,	USA	 [Xue	et	al.,	1991]	
TECO	 Yiqi	Luo,	Oklahoma	University,	USA	 [Zhou	and	Luo,	2008]	

TEM6	 Daniel	Hayes,	University	of	Maine,	USA	 [Hayes	et	al.,	2011]	
TRIPLEX-GHG	 Changhui	Peng,	University	of	Quebec	at	Montreal,	

Canada	

[Peng	et	al.,	2013]	

VEGAS2.2	 Ning	Zeng,	University	of	Maryland,	USA	 [Zeng	et	al.,	2005]	

VISIT	 Akihiko	 Ito,	National	 Institute	 for	Environmental	
Studies,	Japan	

[Ito,	2010]	
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And… but… therefore
• The Arctic-Boreal Region (ABR) is warming and experiencing associated

disturbances at a much greater rate and
magnitude than is the rest of the planet;

AND…

• Because of the sensitivity of the cryosphere to
warming, ABR ecosystem processes are highly
vulnerable to change;

BUT…

• Current Earth System Models are highly
uncertain in representing and predicting ABR
ecosystem-climate feedbacks.

THEREFORE…

• We propose to improve ABR model representation and confidence by
providing a framework for driving and evaluating biosphere models
with ABoVE data.
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Fisher et al., 2014. Carbon cycle uncertainty in the Alaskan
Arctic. Biogeosciences 11(15): 4271-4288.
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“Blind Men and the Elephant”
or

“Terrestrial Biosphere Modelers”
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Science Objectives
Our overarching objective is to evaluate and improve
model performance of ABR ecosystem dynamics focusing
on critical data gaps in initializing, driving, and validating
process-based simulations for the ABoVE domain.
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Science Questions
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Field Studies
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Figure 3. NACP and TRENDY multi-model (n = 23) net CO2 flux for 2003 (a) mean, and (b) standard deviation.

fluxes is due to the vegetation dynamics and soil maps used

in the models (Olefeldt et al., 2013). Models LPJ-WHyMe

and LPJ-Bern both used the same peatland database to de-

termine peatland locations (the two models also contain sim-

ilar code structures), which gives them more central CH4-

producing regions, though they are not identical because of

differences in inundation thresholds and wet mineral soils

leading to CH4 fluxes. Models DLEM, ORCHIDEE, LPJwsl,

and CLM4Me all are driven with or are parameterized from

an inundation data set, which provided a bias away from in-

terior CH4-producing regions. Model SDGVM calculates the

wetlands extent independently, somewhat similar to the wet

soils parameterization in LPJ-Bern.

Total soil carbon for the Alaskan Arctic (North Slope) var-

ied from 1.4 to 29.3 kg C m− 2 across models (Fig. 6), with a

multi-model mean of 14.0 kg C m− 2 and σ of 9.2 kg C m− 2.

We provide the spatial diagnostics for soil carbon in Supple-

ment Fig. S9 (individual models) and Fig. S10 (multi-model

mean and standard deviation). There was no clear spatial pat-

tern similarity across models in soil carbon, with the greatest

multi-model uncertainty throughout the permafrost areas in

the north.

3.2 Temporal variability in carbon

The mean Alaskan Arctic (North Slope) time-varying NEE

for each model was generally similar in timing across mod-

els, showing carbon sinks in the short growing season, sepa-

rated by carbon sources in the winter that represented lower

rates but over a longer period (Fig. 7; we show two years for

comparison, 2002–2003, though the relative patterns remain

for other years). The multi-model de-trended (from the multi-

model mean) σ was 0.01 kg C m− 2 yr− 1. The multi-model

mean month of greatest CO2 uptake was July, with a σ of

0.5 months.

In the Supplement figures, we provide the same time series

plots for the carbon components that comprise NEE (GPP,

NPP, Rh, and Ra; Figs. S11–14). Of particular note is the

considerable variability among models in their estimates of

Rh during the winter (November–March) (Fig. S13), when

all other flux components minimized to zero during this “dor-

mant” period (i.e., November–March). This pattern was cor-

roborated by a recent analysis of winter Rh (between 0–20%

of annual Rh) in similar ecosystems (Wang et al., 2011). The

winter carbon source is also seen as integrated into the time

series of NEE in Fig. 7.

The time series for CH4 in the Alaskan Arctic (North

Slope) showed similar temporal patterns for most of the mod-

els with CH4 flux emissions year round for many models

(Fig. 8). The multi-model mean month of greatest CH4 emis-

sion was August for both years, with a σ of 1.4 months. The

variability in timing of greatest CH4 emission was nearly

three times that of greatest CO2 uptake, indicating large un-

certainty in CH4 flux timing relative to that of CO2, presum-

ably because the climatic controls on photosynthesis (light

and temperature) constrain the period of greatest CO2 uptake

more narrowly than the combination of temperature and soil

moisture that would be likely to affect the modeled seasonal

maximum CH4 release.

Seasonal patterns were negligible for soil carbon (e.g.,

relatively constant throughout each year) so these are not

shown.

3.3 Summary of carbon uncertainties

From a total carbon perspective, the largest quantity of ab-

solute σ for the Alaskan Arctic (North Slope) was in soil

carbon, followed by GPP, Re, NPP, Ra, Rh, NEE, and CH4

(Fig. 9). Proportionally for the gross fluxes (i.e., exclud-

ing NEE and NPP), the largest relative (as opposed to ab-

solute) uncertainty was in Ra at 226 % (0.09 ± 0.20 kg C

m− 2 yr− 1), GPP at 225 % (0.22 ± 0.50 kg C m− 2 yr− 1), Re

at 169 % (0.23 ± 0.38 kg C m− 2 yr− 1), CH4 flux at 160 %

(2.52 ± 4.02 g CH4 m− 2 yr− 1), Rh at 149 % (0.14 ± 0.20 kg

C m− 2 yr− 1), and soil carbon at 66 % (14.0 ± 9.2 kg C m− 2).

Biogeosciences, 11, 4271–4288, 2014 www.biogeosciences.net/11/4271/2014/

The TBM inter-comparison will 
assess sensitivities to driver data, 

model structures, and uncertainties 
in simulating ecosystem dynamics 

indicators.

These results will contribute to 
the ABoVE data collection 

Implementation Plan to ensure data 
are collected that are designed to 

reduce model uncertainties.
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Spaceborne Remote Sensing
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Table 1. Benchmarking data to be used in our project spans the full range of
Indicators for ABoVE ecosystem dynamics.
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Airborne Remote Sensing
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Modeling Approaches: Models
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ABoVE Concise Experiment Plan (ACEP)Fisher et al., 2014. Modeling the terrestrial biosphere. Annual Review of Environment and Resources 39: 91-123.
McGuire et al., 2010. An analysis of the carbon balance of the Arctic basin from 1997 to 2006. Tellus B 62(5): 455-474.

Hayes et al., 2011. Is the northern high-latitude land-based CO2 sink weakening? Global Biogeochemical Cycles 25: GB3018.
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Modeling Approaches: Models
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Model	 Collaborator(s)	 Selected	Reference	
aDVGM2	 Simon	 Scheiter,	 Senckenberg	 Gesellschaft	 für	

Naturforschung,	Germany	

[Scheiter	and	Higgins,	2009]	

Biome-BGC	 Weile	Wang,	NASA	Ames,	USA	 [Thornton	et	al.,	2002]	

CABLE	 Yiqi	Luo,	Oklahoma	University,	USA	 [Wang	et	al.,	2010]	
CLASS-CTEM	 Altaf	Arain,	McMaster	University,	Canada	 [Huang	et	al.,	2011]	

CLM4	 Charles	Koven,	LBNL,	USA	 [Koven	et	al.,	2015]	
CLM4-VIC	 Maoyi	Huang,	PNNL,	USA	 [Li	et	al.,	2011]	
DLEM	 Hanqin	Tian,	Auburn	University,	USA	 [Tian	et	al.,	2014]	

DVM-DOS-TEM	 Hélène	Genet,	University	of	Alaska	Fairbanks,	USA	 [Euskirchen	et	al.,	2009]	
ecosys	 Robert	Grant,	University	of	Alberta,	Canada	 [Grant	et	al.,	2009]	

GTEC	 Dan	Ricciuto,	ORNL,	USA	 [Ricciuto	et	al.,	2011]	
Hyland	 Joshua	Fisher,	NASA	JPL,	USA	 [Levy	et	al.,	2004]	

ISAM	 Atul	Jain,	University	of	Illinois	at	Urbana-Champaign,	
USA	

[Jain	and	Yang,	2005]	

JeDI	 Ryan	Pavlick,	NASA	JPL,	USA	 [Pavlick	et	al.,	2013]	

JULES	 Anna	Harper,	University	of	Exeter,	UK	 [Best	et	al.,	2011]	
LPJ-GUESS	 Ben	Smith	&	Paul	Miller,	Lund	University,	Sweden	 [Smith	et	al.,	2001]	

LPJ-wsl	 Ben	Poulter,	Montana	State	University,	USA	 [Sitch	et	al.,	2003]	
MC2	 Dominique	Bachelet,	Conservation	Biology	Institute,	

USA	

[Peterman	et	al.,	2014]	

Noah-MP	 Zong-Liang	Yang,	University	of	Texas,	USA	 [Niu	et	al.,	2011]	
ORCHIDEE	 Philippe	Ciais,	LSCE,	France	 [Krinner	et	al.,	2005]	

SiB3	 Ian	 Baker	 &	 Katherine	 Haynes,	 Colorado	 State	
University,	USA	

[Baker	et	al.,	2008]	

SiB4	 Ian	 Baker	 &	 Katherine	 Haynes,	 Colorado	 State	
University,	USA	

[Baker	et	al.,	2008]	

SiBCASA	 Kevin	Schaefer,	NSIDC,	USA	 [Schaefer	et	al.,	2008]	
SSiB	 Yongkang	Xue,	UCLA,	USA	 [Xue	et	al.,	1991]	
TECO	 Yiqi	Luo,	Oklahoma	University,	USA	 [Zhou	and	Luo,	2008]	

TEM6	 Daniel	Hayes,	University	of	Maine,	USA	 [Hayes	et	al.,	2011]	
TRIPLEX-GHG	 Changhui	Peng,	University	of	Quebec	at	Montreal,	

Canada	

[Peng	et	al.,	2013]	

VEGAS2.2	 Ning	Zeng,	University	of	Maryland,	USA	 [Zeng	et	al.,	2005]	

VISIT	 Akihiko	 Ito,	National	 Institute	 for	Environmental	
Studies,	Japan	

[Ito,	2010]	
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Environmental driver and initialization datasets that we will organize within 
the ABoVE Science Cloud and make available for ABoVE modeling research
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Modeling Approaches: Format
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• Organized in 
– MODEL

• SIMULATION
– VARIABLE (or FILE)

• NetCDF4 with internal compression
• Variable names are mapped to 

MsTMIP standard
• MsTMIP internal version number 

removed from file names
• Latitude goes from south (-90°) to 

north (90°)

• Conventions = "CF-1.4" ;
• history = "Standardized at ORNL (2014-06-20)\n",

"Variable TVeg renamed to Veg (22-Jun-2014)" ;
• id = "2f7dc4ab-1ac4-4486-84f8-faa7f17c6ee7" ;
• title = "BIOME-BGC monthly Veg for MsTMIP BG1 global simulation" ;
• model = "BIOME-BGC" ;
• model_version = "v4.1.2" ;
• sim_version = "v1" ;
• contact = "Weile Wang" ;
• institution = "NASA AMES Research Center" ;
• email = "weile.wang@gmail.com" ;
• references = "http://ecocast.arc.nasa.gov\n",

"Thornton et al. (2002) Modeling and measuring the effects of disturbance 
history and climate on carbon and water budgets in evergreen needleleaf 
forests. Agriculture and Forest Meteorology, 113, 185-222." ;

• project = "Multi-scale Synthesis and Terrestrial Model Intercomparison 
Project (MsTMIP)" ;

• experiment = "BG1" ;
• comment = "Standardized at Oak Ridge National Laboratory (ORNL)" ;
• mstmip_internal_version = "v2.0.0" ;
• timestamp = "2014-08-06T16:28:26Z” ;
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Geospatial Data Products
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Other expected products / outcomes

• “Lessons Learned” report to guide preparations for ABoVE Phase II modeling
research addressing Ecosystem Services objectives.

– Direction and guidance for new and continued field and remote sensing data
collections, model refinements and developments, and opportunities for integration
across multiple modeling teams and other research activities within ABoVE.

– In Year 3 we will begin to establish the links to the Ecosystem Services datasets and
modeling requirements, following the foundation and setup we will establish
throughout Phase I. For example, this includes using permafrost projections to
inform infrastructure decisions (e.g., roads, pipelines built on thawing permafrost).
The focus will be on engagement with interdisciplinary research teams toward a goal
of science–data interoperability, including linking TBM frameworks with social systems
to develop hypotheses related to ABoVE’s Ecosystem Services Objectives.
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