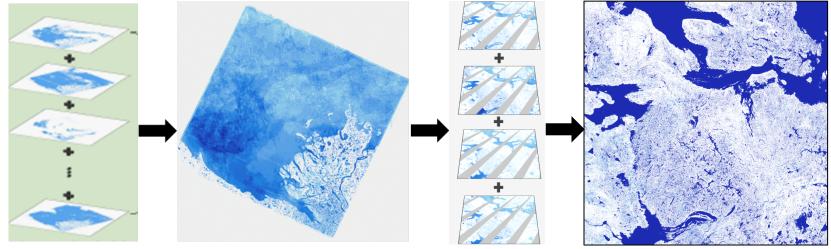

Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

Carroll - 01

Mark Carroll¹ Maggie Wooten¹, Charlene DiMiceli², Rob Sohlberg², John Townshend², Maureen Kelly²

1) GSFC/SSAI
2) University of Maryland

Global 250 Meter Water Map

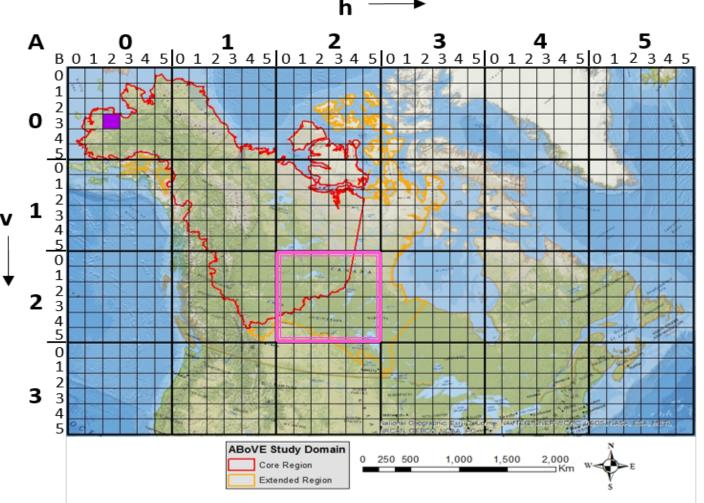


- Global water map created at 250m spatial resolution released Aug. 2009
- MODIS methodology used daily observations accumulated over a year or more to generate a "nominal" extent of water

Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

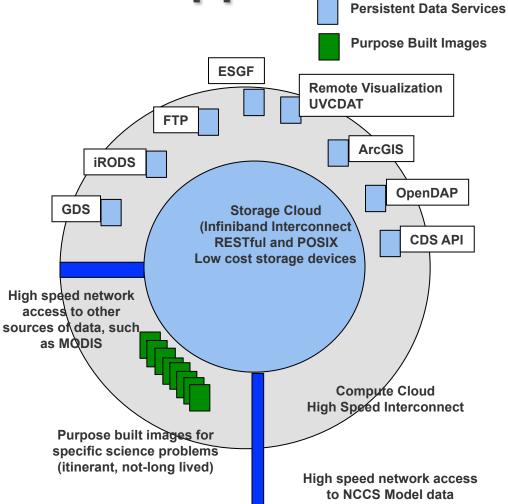
- Landsat time series in the North American Arctic is extensive
- We use the full available time series to minimize the impact of anomalous weather events (drought, flood) in individual scenes
- Maps will represent surface water extent for 3 epochs 1990 - 1992, 2000 - 2002, and 2010 - 2012
- These maps can be used to identify hotspots of change and to identify field sites for study during the ABoVE campaign

Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

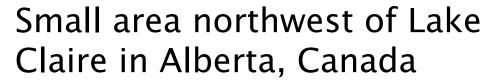


- Decision tree classification on each Landsat scene
- Extract theme (water) from each date, build data stack
- Sum water observations for entire epoch
- Mosaic each themed scene into ABoVE tile (no overlap)
- Sum mosaicked tiles to create a total per theme for each ABoVE tile

Water determined as a probability of water


Determining the Extent and Dynamics of Surface Water for the ABoVE Field Campaign

Working with other pre-ABoVE scientists and the CCE project office, agreed on common projection (Canada Alber's Equal Area) and a grid to reduce the file size for ease of distribution



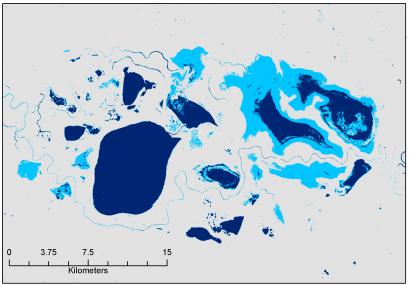
ABoVE Science Cloud Application

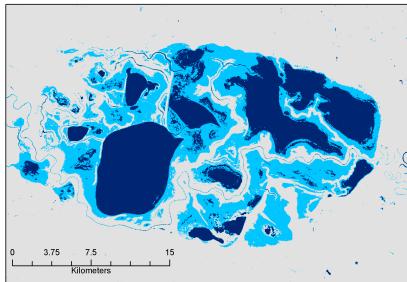
- Original processing plan involved a couple of workstations and rotating data through an 8TB RAID
- Anticipated processing time 9 – 12 months
- Only final outputs would be kept online
- No time available for reprocessing
- Enter the Science Cloud at NCCS and GSFC High Performance Computing

Method Verification

- ABoVE water maps identified 450 water bodies
- 95% (427) matched WV02 result
- WV02 identified 565 water bodies >225 m² (i.e. ¼ Landsat pixel)

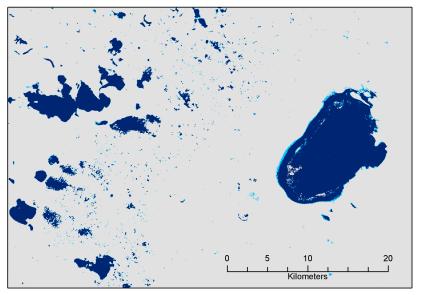
Of the water bodies that did not match WV02 result


- 64% were 1 Landsat pixel or smaller
- 90% were 3 Landsat pixels or smaller

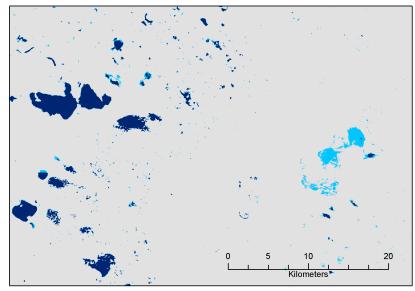

Preliminary Results 5.0-Athabásc 1.5 Edmonton .ake <mark>W</mark>innipeg

Preliminary Results

- Over 500,000 water bodies identified in ABoVE Water Maps (2011) in tile h02v02
- ~360,000 water bodies identified in GlobeLand30 (30m Landcover 2010)
 - Water bodies missed by GlobeLand30 ranged in size from 8 km² to 0.0009 km² (1:30m pixel)
 - Most misses were small and/or adjacent to other water bodies
 - Overall difference in area of any given water body ranged from 0 to >1 km²



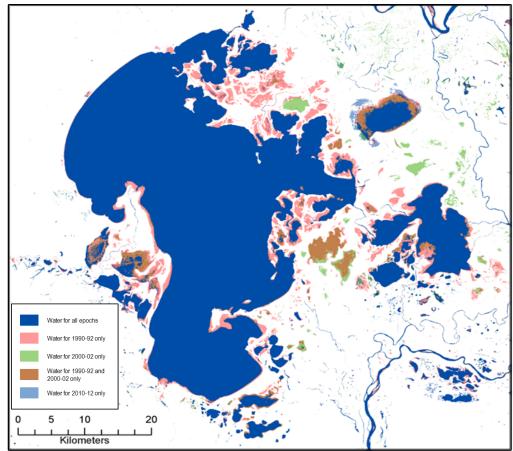
Ephemeral Water


- Hay Lake in Alberta, Canada between 2001 and 2011
- Both perennial and ephemeral water surface area has expanded during the study period

Preliminary Results

Beaver Hill Lake 2001

Beaver Hill Lake 2011



Ephemeral Water

- Beaver Hill Lake near Edmonton, Alberta, Canada between 2001 and 2011
- Both perennial and ephemeral water surface area has declined during the study period

Preliminary Change Result

- Series of maps at 30m spatial resolution depicting nominal water extent for a given epoch (1990–1992, 2000–2002, 2010–2012) produced from Landsat data
- Data produced operationally in the ABoVE Science Cloud (ASC)

Change in Surface water in Lake Claire, Canada 1990 - 2012 using ABoVE Decadal Water Maps

Current Status

- Processing of >100,000 landsat scenes has been completed in the ABoVE Science Cloud
- Processing time reduced from 9 months to 6 weeks
- Alpha version of maps complete for all epochs
- Two masks have been applied
 - Oceans derived from coarse resolution data
 - 10 pixel buffer around shoreline
 - Terrain shadow mask derived from slope and elevation

Focus for this project is on lakes, rivers may be discontinuous in places

Current Status (cont.)

- Issues being addressed
 - Relic terrain shadows not captured by slope threshold
 - Persistent ice in the far north
 - Insufficient data in Alaska for 1991 Epoch
- First results to be released November timeframe, final results in Jan/Feb time-frame
- Final product will be raster and will include a companion raster that gives QA information
- Funding from NASA Terrestrial Ecology grant #NNX13AK57G

Thank You!