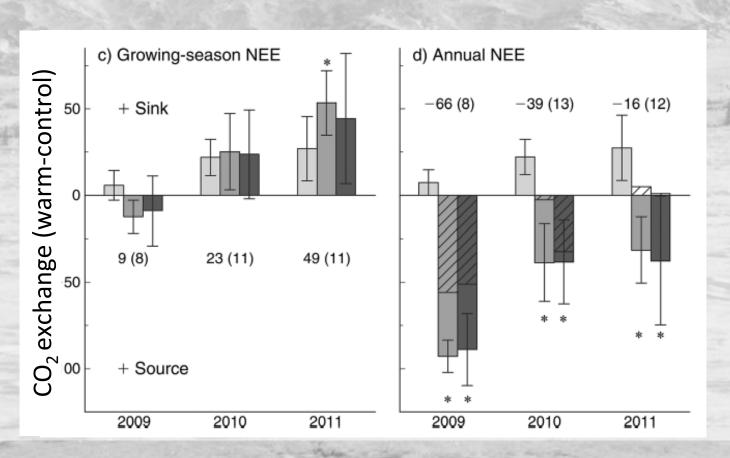
Sue Natali Woods Hole Research Center (WHRC)

Winter respiration in the Arctic

Co-Investigator: Scott Goetz, WHRC Collaborators:


Torre Jorgenson, EcoScience, Fairbanks AK Dave Risk, St. Francis Xavier University Julie Jastrow, Argonne National Lab

Context (and, but, therefore)

 Winter CO₂ emissions can shift ecosystems from a growing season C sink to annual source

Context (and, but, therefore)

- Winter CO₂ emissions can shift ecosystems from a growing season C sink to annual source
- AND greatest warming is occurring in the Arctic during the winter months
- BUT there is large uncertainty in estimates of winter
 CO₂ emissions
- THEREFORE we propose a winter respiration monitoring network to investigate drivers of winter respiration & improve estimates of CO₂ emissions

Science Questions & Objectives

• <u>Science Question</u>: How are the magnitudes, fates, and land-atmosphere exchanges of **carbon pools** responding to environmental change, and what are the **biogeochemical** mechanisms driving these changes?

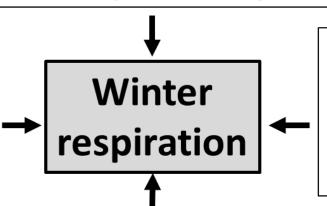
Science Questions & Objectives

- <u>Science Question</u>: How are the magnitudes, fates, and land-atmosphere exchanges of **carbon pools** responding to environmental change, and what are the **biogeochemical** mechanisms driving these changes?
- Tier 2 <u>Science Objectives</u>, Ecosystem Dynamics
 - O4: Quantify how changes in the spatial and temporal distribution of snow impacts ecosystem structure and function
 - O6: Elucidate how climate change and disturbance interact with above-and belowground communities and processes to alter carbon biogeochemistry, including release to surface water and the atmosphere.

Research Objectives

- Collect ground-based measurements of surface & subsurface properties, with an emphasis on areas undergoing permafrost degradation
- Establish network of automated soil respiration sensors to determine winter CO2 emissions & relevant drivers
- Map surface properties of permafrost landscapes using various remote sensing and gridded data products
- Extend field measurements spatially and temporally using satellite-derived data sets of drivers of winter respiration

Research Overview


Organic matter quality

Plant inputs: NDVI; Organic matter: Soil C:N, mid-IR

Plant inputs: MODIS Terra& Aqua, Landsat reflectance & veg indices

Soil Temperature

Soil & air temp., snow depth Snow Cover (MOD10A1) Snow water equiv. (AMSR-E) Surface temp (MOD11A2)

Soil Moisture

CS616 moisture probe Freeze thaw & soil moisture: SMAP, PALSAR L-band

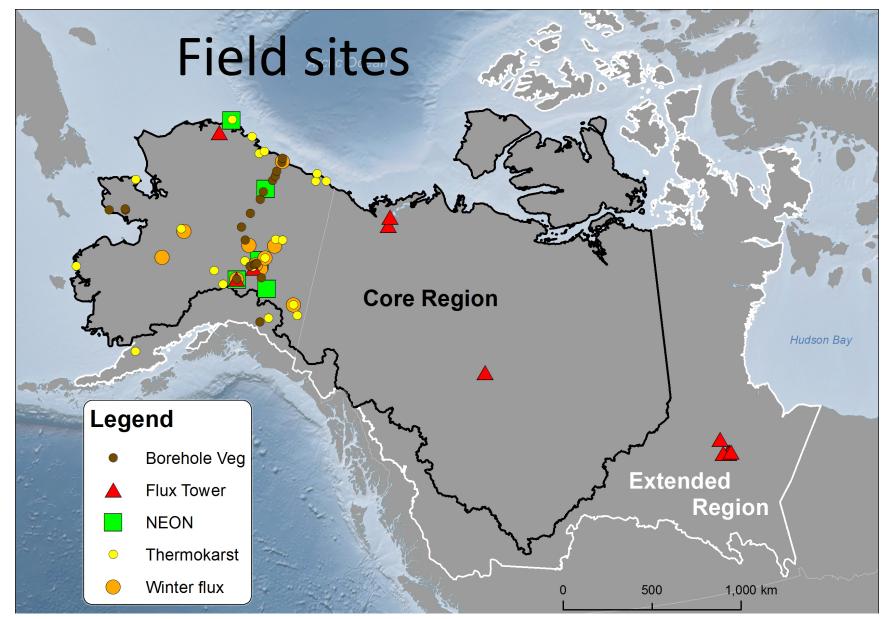
Organic matter quantity

Organic & active layer depths, %C, bulk density

NCSCD soil carbon map (Hugelius et al. 2013)

Field Studies

- Forced diffusion sensors
- 'continuous' CO₂ flux thru winter
- passively regulate diffusive flow (e.g., Risk et al. 2011)
- chamber fluxes & 2 soil [CO2] sensors to solve for Q_{10} and production depth (Latimer & Risk 2015)
- Continuous soil & air temp, moisture, snow depth
- Soil sampling for organic matter quantity & quality (C, N, FTIR)



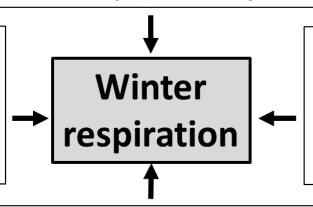
Field Studies-Timeline

- 2015-2016: Construct FD systems
- 2015-2016: Winter respiration synthesis
- 2016 spring & fall: Install FD systems at disturbance sites
- 2016: Soil sampling, all sites
- 2016-2018: Sensors at disturbance sites
- 2018-2019: Co-locate sensors with eddy towers for data calibration

Field sites

Site	Latitude	Longitude	Region	Site Description
Taylor Highway	63.46	-142.49	Taiga	Rocky uplands; burn chronosequence
Innoko Flats	63.57	-157.73	Taiga	Peaty silty lowlands; young and intermediate bogs, old forest with permafrost
Eielson- Horseshoe	64.76	-147.05	Taiga	Uplands; yedoma
Creamer Field	64.87	-147.73	Taiga	Birch forest with ice wedge degradation
Koyukuk	65.19	-156.64	Taiga	Peaty silty lowlands; young and intermediate bogs, old forest with permafrost
Nome Creek	65.35	-146.92	Taiga	Upland; young burns & old forests
Hess Creek	65.70	-149.14	Taiga	Upland boreal; burn chronosequence
Boot Lake	66.06	-146.26	Taiga	Yedoma, paired degradation transects
Imnavait	68.61	-149.30	Tundra	Tussock and heath tundra
Prudhoe Bay	70.23	-148.42	Tundra	Ice wedge degradation

Spaceborne Remote Sensing


Organic matter quality

Plant inputs: NDVI; Organic matter: Soil C:N, mid-IR

Plant inputs: MODIS Terra& Aqua, Landsat reflectance & veg indices

Soil Temperature

Soil & air temp., snow depth Snow Cover (MOD10A1) Snow water equiv. (AMSR-E) Surface temp (MOD11A2)

Soil Moisture

CS616 moisture probe
Freeze thaw & soil
moisture:
SMAP, PALSAR L-band

Organic matter quantity

Organic & active layer depths,
%C, bulk density
NCSCD soil carbon map (Hugelius et al. 2013)

Expected products / outcomes

- Maps of surface properties of permafrost landscapes
- Multi-scale freeze-thaw products
- Winter CO₂ flux data & data synthesis: mechanisms and drivers of winter respiration
 - Scaling spatially and temporally
 - Data for model benchmarking & calibration

