

Franz J Meyer University of Alaska Fairbanks

Project code: Meyer-01

Methane Emissions from Thermokarst Lakes Using Remote Sensing and Field Data

University of Alaska Fairbanks:

K. Walter Anthony, Ch. Arp, M. Engram, P. Regmi, L. Wirth

AWI, Potsdam, Germany:

University of Wyoming:

Alaska DGGS:

Alaska USGS:

NWT Geoscience Office, Yellowknife, Canada: G. Grosse

A. Parsekian

R. Daanen

B. Jones

S. Kokelj

Institutional Collaborations

- Academia:
 - University of Alaska Fairbanks
 - University of Wyoming
- Governmental:

- Alaska DNR Division of Geological and Geophysical Surveys
- Alaska USGS
- NWT Geoscience Office, Yellowknife, NWT, Canada
- Research Centers:
 - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research in Potsdam, Germany

And... but... therefore

 Warming permafrost is storing a large amount of old carbon AND is releasing it into the atmosphere through methane bubbles raising from thermokarst lakes (permafrost carbon feedback "PCF" to climate warming).

- **BUT...** the magnitude of the PCF during the past 60 years (historical imagery) has not been quantified.
- Remote sensing data (optical and SAR) can detect methane bubbles and, when calibrated with field work, can be used to quantify the PCF associated with thermokarst lakes.

Science Questions

- Tier 2 Science Question addressed:
 - SQ 3.6: How are the magnitudes, fates, and landatmosphere exchanges of carbon pools responding to environmental change, and what are the biogeochemical mechanisms driving these changes?

Field Studies

 23 thermokarst lake districts across ABoVE Science Domain (thousands of lakes)

- In-Situ Measurement types:
 - Lake CH4 emissions measurements ("bubble traps")
- Soil Organic Carbon (SOC) samples at eroding shores
- Geophysical
 - measurements of thaw-bulb geometry (A. Persekian)

Measurements will be taken in late fall right after freeze up

Spaceborne Remote Sensing

- <u>Optical</u>: Medium- to high-res optical remote sensing data (Landsat, Spot Series, WorldView Series)
 - Goals: lake boundaries and lake change;
 CH4 emission estimation
- <u>SAR</u>: Polarimetric L-band SAR data (ALOS PALSAR; ALOS-2; SAOCOM; NISAR) available from ASF
 - Goals: CH4 lake methane emission measurements

Airborne Remote Sensing

- Optical:
 - Historic airborne optical data (AHAP, NARL, USGS
 Historic Imagery) → historical lake boundaries → lake
 change
 - 8 years of recent high-res optical data \rightarrow detection methane bubbles in ice
- SAR: Historical data from AirSAR and Alaska Statewide Digital Mapping Initative (SDMI) → high-res DEMs for geocoding
- No new airborne data collects were proposed, BUT ...
 - Airborne L-band SAR over calibration sites would be valuable
 - We'd like to continue our own high-res optical data collects

Modeling Approaches

- CH4 estimation: Correlation models
 - Driver data: CH4 field measurements & SAR observations

- SOC input to lakes: numerical & regression models
 - Driver data: SOC and CH4 field data
- Extensive error propagation modeling for accuracy estimation

Data Formats and Metadata Standards

- Work with the Geographic Information Network of Alaska (GINA) and ABoVE team data geocoding/sharing
- Raster-based products:
 - GeoTIFF format
 - Fully embedded geocoded meta information → easy distribution via Open Geospatial Consortium (OGC) Web Mapping Services (WMS) and Web Coverage Services (WCS)
- Vector-based data:
 - − Shapefile and zipped Keyhole Markup Language (kmz) formats
 → compatibility with most GIS and image processing tools

Geospatial Data Products

Product name	Product description	Format	Spatial coverage
Multi-temporal layers of	Geocoded & terrain-corrected raster	GeoTIFF;	Full project application region
geocoded RS imagery	imagery; UTM projection	WMS; WCS	(i.e. 25 23 ABoVE sub-regions)
Historical Hydro	multi-temporal historical lake boundaries	Shapefiles;	All lakes within project
		kmz	application region
Lake-bound CH ₄ ebullition	Geocoded feature layer product with	Shapefiles;	All lakes within project
emission maps	associate attribute table	kmz	application region
Regional SOC stock maps	Geocoded raster product, mg SOC m ⁻² ,	GeoTIFF;	Regions around selected active
	standard deviation mg SOC m ⁻²	WMS; WCS	thermokarst margins of lakes
Regional CH ₄ emission	Geocoded raster products, mg SOC m ⁻² ,	GeoTIFF;	Regions around active
vulnerability maps	standard deviation mg SOC m ⁻²	WMS; WCS	thermokarst margins of lakes
Present-day regional-scale	Tabularized data; emission via ebullition	CSV	Complete project application
net lake <i>CH</i> ₄ emission	in ml gas m ⁻² d ⁻¹ and mg CH_4 m ⁻² d ⁻¹		region
budget	standard deviation in ml gas m ⁻² d ⁻¹ and		
	$\operatorname{mg} CH_4 \operatorname{m}^{-2} \operatorname{d}^{-1}$		
Ebullition flux data from	Tabularized data of field-measured	CSV	Field study lakes (number of
bubble traps	ebullition rates measured by submerged		study lakes reduced due to
	bubble traps in ml gas m ⁻² d ⁻¹ ; standard		reduction in project duration)
	deviation in ml gas m ⁻² d ⁻¹		
Bubble CH4 content and	Tabularized data of CH ₄ % measured in	CSV	Field study lakes (number of
isotopes	ebullition bubbles and the stable isotopes		study lakes reduced due to
	$(\delta^{13}C_{CH4}, \delta^{13}C_{CO2}, \delta D_{CH4})$ and ${}^{14}C_{CH4}$		reduction in project duration)
	ages of bubbles; standard deviations.		
Soil carbon data	Tabularized data of bulk density,	CSV	Soils surrounding field study
	gravimetric ice content, organic C, and		lakes (number of study lakes
	⁺ C ages measured on soil samples;		reduced due to reduction in
	standard deviation.		project duration)

Other expected products / outcomes

- Interesting non-traditional products:
 - **Open-hole hazard maps:** Open holes significant hazards for snow machines
 - "Cooking fuel" maps: CH4 seeps often used for heat and cooking
- Interaction with and engagement of local communities:
 - Community visits during field campaigns (incl. presentations)
 - Involving communities in research (traditional knowledge; class projects)

Questions?

Contact: fjmeyer@alaska.edu; 907-474-7767