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The Unique Opportunity 
ABoVE Airborne Intensives

• Obtain unprecedented Arctic-Boreal Region remote sensing 
data 
– Spatial Resolution

– Coverage

– Accuracy 

– Quantified Uncertainties

• Validate existing RS for ABR Ecosystems

• Pioneer new TE sensors, sensor combinations and 
methodologies
– Demonstration for future satellite sensors (ES Decadal Survey #2)
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Challenges for Implementing 
Successful ABoVE Airborne Intensives

Nominal Schedule: 

– 2017 Intensive 1

– { 2018 Bridging }

– 2019 Intensive 2

• Schedule for Intensive 1 defines ABoVE Critical Path

• Intensive 1 will be planned prior to results from 
ABoVE Phase 1 field work

• Intensives will be resource limited  Prioritization
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The BOREAS Legacy: AVIRIS-NG VSWIR Imaging 
Spectroscopy for Carbon Cycle and Ecosystem Science

Spectrometer

Telescope

Detector Array

Slit

≥100’s of  Parallel Spectrometers
Calibrated
Image Cube

Ecosystem composition, 
function, chemistry, etc.
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High-Demand Sensors and 
Sensor Combinations

• Multi-frequency radar 
measurements (UAVSAR, AirMOSS)

• LIDAR (LVIS)

• Joint LIDAR-RADAR coverage

Targets:

• Permafrost characterization, ALT

• 5% random sample of unmanaged 
boreal forest (above ground 
biomass)
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New Sensors and Science:
Solar Induced 

Fluorescence (SIF)

• Direct probe of productivity

• Joint deployments of SIF and hyperspectral
imagers for direct comparison of SIF and 
vegetation indices (and chemistry, 
phenology, water stress, PFTs, etc)

• Validate OCO-2 SIF for ABR ecosystems

• Augment shoulder season coverage

Targets:

• Greening and browning areas identified 
from satellite RS

• Fire recovery sites
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Divide and Conquer:
Joint G-LiHT & ASO Deployments

• Comparable payloads & data products

• Joint deployments  2x simultaneous coverage

Targets:

• Tundra-Taiga boundaries

• Fire succession/recovery areas
7
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Synergies
ICEBRIDGE/ARISE
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• How can ABoVE leverage 
ICEBRIDGE and/or ARISE?

• What ICEBRIDGE data are 
valuable to ABoVE?

• What additional payloads 
or or modified flight lines 
would benefit ABoVE?

• Aircraft: C-130, P-3 

Also: Arctic Colors, 

ARM/NGEE-Arctic, etc
NASA pilot Jeff Chandler looks out at the sea ice during a 
flight in NASA's C-130 over the Beaufort Sea on Sept. 13, 

2014. Credit: NASA / Patrick Lynch
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Alaska SIF
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• High spatial resolution

• Regional gradients 
observed across the 
tundra and boreal 
forest

• 1 year of OCO-2 data 
gives 10x more SIF 
samples (200k) than 5 
years of GOSAT (15k)
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OCO-2 SIF: Seasonal coverage for Alaska
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CASI-1500 Imaging Spectrometer

0.35-1.05 μm

2 m spatial resolution from 4000 m AGL 
Riegl Q1560 3D Scanning lidar

1064 nm, canopy penetration

1 m spatial resolution

AlbedoSnow Water

Equivalent

• < 24 hour turnaround of products
• Quantification of snow volume

• Snow depth uncertainty = 2 ± 1 cm
• Quantification of snowmelt timing
• Quantification of snowfall

• Same payload delivers ecosystem 
structure, function & chemistry data
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G-LiHT:  Goddard’s Lidar, Hyperspectral, and 
Thermal airborne imager

G-LiHT is a portable, airborne imaging system 

that simultaneously maps the composition, 

structure, and function of terrestrial 

ecosystems using: 

1) lidar to provide 3D information about 

the spatial distribution of canopy 

elements; 

2) imaging spectroscopy to discern 

species composition and variations in 

biophysical variables (e.g., 

photosynthetic pigments, nutrient and 

water content); and 

3) thermal measurements to quantify 

surface temperatures and detect heat 

and moisture stress. 

Cook et al., 2013
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INSTRUMENT SPECIFICATIONS

Scanning lidar (Riegl VQ-480)
Swath width*/FOV 387 m (60°)
Footprint diameter 10 cm (0.3 mrad)
Maximum ranging distance 350 m
Sampling density at surface† 6 pulses m-2

Max. returns per pulse 8

Irradiance spectrometer (Ocean Optics USB-4000)
FOV hemispheric (180°)
Raw sampling resolution 1.5 nm
Acquisition rate 1 Hz

Imaging spectrometer (Headwall Hyperspec)
Swath width*/FOV 310 m (50°)
Cross track pixels 1,004
Spectral range 420 to 920 nm
Raw/Binned sampling resolution 1.5/4.5 nm
Spectral resolution (FWHM) 8 to 15 nm
Acquisition rate 50 Hz

Thermal camera (Xenics Gobi-384)
Swath width*/FOV 173 m (30°)
Imaging array size 384 × 288
Spectral range 8 to 14 μm
Sensitivity (NETD) >50 mK at 30°C
Acquisition rate 25 Hz

GPS-INS (Oxford RT-4041 w/Omnistar G2)
Position accuracy 10 cm
Roll/pitch/yaw accuracy 0.03°/0.03°/0.10°

* At nominal altitude of 335 m (1100 ft) AGL
† At laser pulse repetition frequency of 300 kHz
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INSTRUMENT SPECIFICATIONS

Scanning lidar (Riegl VQ-480)
Swath width*/FOV 387 m (60°)
Footprint diameter 10 cm (0.3 mrad)
Maximum ranging distance 450 m
Sampling density at surface† 3 pulses m-2

Max. returns per pulse 8

Irradiance spectrometer (Ocean Optics USB-4000)
FOV hemispheric (180°)
Raw sampling resolution 1.5 nm
Acquisition rate 1 Hz

Imaging spectrometer (Headwall Hyperspec)
Swath width*/FOV 310 m (50°)
Cross track pixels 1,004
Spectral range 420 to 920 nm
Raw/Binned sampling resolution 1.5/4.5 nm
Spectral resolution (FWHM) 8 to 15 nm
Acquisition rate 50 Hz

Thermal camera (Xenics Gobi-384)
Swath width*/FOV 173 m (30°)
Imaging array size 384 × 288
Spectral range 8 to 14 μm
Sensitivity (NETD) >50 mK at 30°C
Acquisition rate 25 Hz

GPS-INS (Oxford RT-4041 w/Omnistar G2)
Position accuracy 10 cm
Roll/pitch/yaw accuracy 0.03°/0.03°/0.10°

* At nominal altitude of 335 m (1100 ft) AGL
† At laser pulse repetition frequency of 150 kHz

G-LiHT: Goddard’s Lidar, Hyperspectral, and Thermal 
airborne imager
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Mapping Plant Species/Land-cover 
Classes

• Map generated using AVIRIS-C 

and Multiple Endmember 

Spectral Mixture Analysis 

(MESMA)

• Incorporates within species and 

cross species spectral variability 

in mapping

Roberts et al., 2014, in revision RSE

Spectra of (a) NPV; (b) GV; (c) Rocks/soils;

(d) impervious materials. Codes = Genus& species: 

e.g. ADFA = Adenostoma fasciculatum



above.nasa.gov  @NASA_ABoVE

• Canopy Nitrogen from imaging spectroscopy 
measurements

Vegetation Chemistry from 
Spectroscopy
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Composition for 
Ecosystem Modeling

Basal Area = 33.5 m2/ha

FIELD OBSERVED

IMAGING 

SPECTROSCOPY 

DERIVED

Basal Area = 35.6 m2/ha
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 Initial: Horizontal heterogeneity in canopy structure 

represented. Parameter values specified from the 

literature. 

 HET: Horizontal heterogeneity in canopy structure. 

Optimized model parameters.

 AGG: ‘big-leaf’ model (aggregated model of forest 

canopy). Optimized model parameters 

 HET model has better predictive capability than 

AGG model
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Imaging spectroscopy of plant physiology
PI: Phil Townsend, University of Wisconsin-Madison

CoIs: Shawn Serbin (BNL), Mike Goulden (UCI)
Eric Kruger, Ankur Desai, Sean Dubois (UW)

Progress, Plans and Expected Results:
• Calibrations are robust for both broadleaf and 
conifer species;

• Sampled sites in spring and early summer in 
2013 and 2014; 

• EC tower flux data inversions in process; data 
set covers 19 towers and 224 images;

• Maps of Vcmax and Jmax corroborate field 
measurements;

• Results provide basis to map key metabolic 
properties needed for earth system models 
using HyspIRI.

Objective
We proposed to use hyperspectral + thermal 
IR imagery from HyspIRI to map vegetation 
metabolic capacity of photochemistry.

Approach:

Leaf/Plot

Field

Photosynthesis

Vcmax

Jmax

HyspIRI

HSI+TIR

Map

Metabolic 

Capacity

Eddy Cov.

Flux

Towers

NEE ✔

Loma Ridge (Coastal Sage) Coachella Valley (ag)

Vcmax Vcmax
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Drought Impacts on Vegetation Species Measured Using Simulated VSWIR Products
Phil Dennison1, Austin Coates1, Dar Roberts2, Ken Dudley1, and Keely Roth3

1University of Utah  2UC Santa Barbara  3UC Davis

Objective
• Determine the impacts of 
California’s record drought on 
vegetation species cover and 
condition

Approach
• HyspIRI VSWIR data can resolve 
differences between non-
photosynthetic vegetation (NPV) 
and soil, measure canopy water 
absorption, and map dominant 
vegetation species
-Increased NPV fractional cover 
indicates senescence and canopy 
dieback
-Decreased liquid water 
thickness, a measure of canopy 
water content, indicates loss of 
leaf area and moisture
• Fractional cover and liquid 
water were calculated from 
simulated HyspIRI VSWIR 
products for 2013 and 2014 (2nd

and 3rd year of drought).

Progress and Expected Results
• Grassland and coastal sage scrub phenology dominate the short term change in fractional cover and 
liquid water when comparing April 2013 to June 2013
• Evergreen chaparral has strong increases in NPV fraction, indicating canopy dieback, when comparing 
April 2013 to June 2013 and November 2013
• Rainfall in late February/early March 2014 resulted in (likely temporary) recovery in NPV fraction, but 
minimal recovery in liquid water
• Ceanothus is more sensitive to long term drought compared to chamise, but also  exhibits more 
recovery in GV and NPV fractions following rain
• Further analysis will incorporate 2014 summer and fall data, land surface temperature from MASTER 
data, and comparison of pre-drought (2011) to  2013-2014 will also be investigated

a. Apr. 2013 normalized NPV, GV, and soil
fractions; b. November 2013 fractions; 
c. April 2014 fractions; d. Species time series NPV 
and liquid water thickness for ADFA (light shades) 
and CEME (dark shades)
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Mapping Species Using a Phenologically Inclusive 
Multi-temporal Spectral Library

Dudley, K.L., Dennison, P.E., Roth, K.L., Roberts, D.A., Coats, A.R. 

Objectives
• Incorporate a wider temporal 

range of spectra to facilitate 

mapping species as they vary 

across spatial, temporal, and 

phenological gradients

• Compare single-date and multi-

temporal endmember library 

approaches for mapping 

species

Approach
• Utilized 5 2009 AVIRIS image dates for Santa 

Ynez Mountains, California

• Extracted spectra from species polygons to 

create 5 single date libraries and a 

combined multi-temporal library

• Used Iterative Endmember Selection (IES) to 

select optimal EM subset for single date and 

multi-temporal libraries

• Used Multiple Endmember Spectral Mixture 

Analysis (MESMA) to map species using single 

date and multi-temporal libraries

• Assessed mapping accuracy and dates of 
endmembers used for mapping

Results
• Number of endmembers used varied by species and date

• Multi-temporal classification had equivalent accuracy to 

single-date classification (within 1.3%)

• Endmember dates varied over space, and classification 

accuracy improved for several species

Endmember dates 

used to classify 

each pixel

Number of EMs selected by IES for 

multi-temporal library
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Fire: Risk, Burning, Severity 
and Recovery
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Potential Support To ABoVE
• AVIRIS-NG is being adapted to fly on both the 

B200 and ER-2

• AVIRIS-NG delivers both level-1 and level-2 
(reflectance) product through advanced 
algorithms developed for HyspIRI

• AVIRIS-NG equals or exceeds all ecosystem 
capabilities of AVIRIS-C

• With full VSWIR imaging spectroscopy, 
AVIRIS-NG can contribute in areas of the 
atmosphere (methane), snow and ice, 
coastal and inland waters, human 
infrastructure, etc.

• AVIRIS-C has flown in Alaska and was part of 
BOREAS


