

Scott Goetz

Mapping and Modeling Attributes of an Arctic – Boreal Biome Shift

(Goetz-03)

Matt Macander

ABR Inc. – Environmental Research, Fairbanks, AK

Michelle Mack

Northern Arizona University, Flagstaff AZ

Peter Nelson

University of Maine, Fort Kent ME

Brendan Rogers

Woods Hole Research Center, Falmouth MA

Hank Shugart & Jackie Shuman

University of Virginia, Charlottesville VA

Institutional Collaborations

Ted Hogg

Canadian Forest Service, Edmonton AL

Jim Lawler, Maggie MacCluskie, Carl Roland

National Park Service, Fairbanks AK

Philip Martin

US Fish & Wildlife Service, Fairbanks AK (Arctic LCC)

Changhui Peng

University of Quebec at Montreal (UQAM)

Matt Stevens

University of Alaska, Fairbanks AK (Extension Service)

And.. But.. therefore (i.e. huz come?)

- Climate change in underway across the North American arctic-boreal region
- We need to understand how ecosystems will respond and what the implications will be – and how to plan management responses
- Our project focuses on addressing change in vegetation dynamics across the ABoVE domain
 - boreal mortality & productivity changes ("browning")
 - tundra productivity ("greening")
 - Evidence for related "biome shift"

Expectations / predictions / Hypotheses

- Warmer temperatures in the arctic region result in increased vegetation productivity, as it is released from temperature constraints, and more gradual changes in vegetation composition and structure.
- Warmer and drier air masses in the southern boreal region result in declining forest productivity as a result of increasing stomatal control and decreased net carbon uptake, and associated increases in tree mortality.
- [Transitions in the presence, abundance, movement and vulnerability of fauna, e.g. caribou, moose, hares, etc. as vegetation productivity (in the shorter term) and composition and structure (longer term) change]

Science Questions & Objectives

- Overarching ABoVE Science Question:
 - How vulnerable or resilient are ecosystems and society to environmental change in the Arctic and boreal region of western North America?"
- Tier 2 Science Questions addressed
 - How are flora and fauna responding to changes in biotic and abiotic conditions, and what are the impacts on ecosystem structure and function?
- Tier 2 Science Objectives addressed
 - Determine the causes of greening and browning trends and their impacts on ecosystem form and function.
 - ["Determine how the spatial and temporal dynamics in both faunal abundance and characteristics of fish and wildlife habitat co-vary across gradients of climate and disturbance."]

Our *Project* Objectives

Objective 1: Arctic Vegetation Mapping

Peter Nelson & Matt Macander

Objective 2: Boreal productivity & tree mortality patterns linked with remote sensing

Brendan Rogers & Michelle Mack

Objective 3: Model boreal tree species productivity, mortality and distribution / environmental suitability changes

Jackie Shuman & Hank Shugart

Objective 1: Arctic Vegetation Mapping / Field Data

Mapping extent & density

- <u>Shrubs</u>: Low shrub and dwarf shrub zones in Alaska, based on the CAVM
- <u>Lichens</u>: northern Alaska and central Canada covering the ranges of the Western Arctic, Teshepek, Central Arctic and Porcupine herd

Field data (see map)

- Vegetation Monitoring Plots in National Park Service Arctic Network: 471 plots
- BLM National Petroleum Reserve Alaska (NPRA): >130 plots

Fig 1: Caribou home ranges (colors) and location of in situ datasets (cross hatching).

Obj. 1 - Arctic Veg Field Studies

- Specifics of ground measurements
 - NPS ARCN long-term vegetation plots with vegetation (incl. lichens) & soil attributes.
 - Each plot w. four 6 m transects within an 8 m radius circle.
 - Vascular plant cover sampled every 25 cm along each transect
 - Plus a 20 km x 20 km grid over the ARCN w. high resolution imagery & aerial photos at each grid point.
 - Designed by NPS to track changes in shrub and tree distribution.
- Planning / timing of field efforts
 - No new mmts planned but a compilation of existing arctic species-level community data (NPS & BLM) is proposed
 - Desire to construct a novel trait-based community data set

Objective 1: Arctic Vegetation Mapping

Remote Sensing Data

(all tentatively available on ASC)

- <u>Landsat composites</u>
 Seasonal (early, middle, late summer) reflectance
- Selected <u>high resolution imagery</u> (DG/NGA)

Approach / Outputs

- Screen high-resolution satellite imagery for quality summer data & with field plot data
- Automate shrub & lichen cover estimation on plots from high-resolution satellite imagery, calibrated by cover estimates from in situ plots
- Aggregate high-resolution estimates to 30 m
- Estimate cover using Landsat w/ data mining algorithms (e.g. Random Forests)
- Generate maps of continuous lichen (Fig. 2) and shrub cover (Fig. 3) at two time epochs (2000 and 2010) for change detection

Fig. 2: Lichen cover map, Denali

Fig. 3: Shrub cover map, NPRA².

Obj. 2 – Boreal Veg Field Studies

- Existing ground measurements
 - CAFI (Cooperative Alaska Forest Inventory)
 - Matt Stevens
 - CIPHA (Climate Impacts on Productivity and Health of Aspen)
 - Ted Hogg
 - Canadian Provincial permanent sample plots
 - Changhui Peng

CAFI (Cooperative Alaska Forest Inventory)

- 612 PSPs (permanent sample plots)
- 409 of the PSPs are contained in the ABoVE domain.
- each covering 405 m², arranged at three per site and spaced at 30 63 m apart.
- Plots established in 1994 and later in interior and south-central Alaska and the Kenai Peninsula
- sampled every five years.
- As of 2014, 77% of the plots have been sampled at least three times.

CIPHA (Climate Impacts on Productivity and Health of Aspen)

- 144 aspen PSPs in 24 study areas across the western Canadian interior
- 114 of the PSPs are in the ABoVE domain.
- established in 2000
- Each study area contains 3 sites spaced at a distance of 30 km or less, each of which contains two PSPs covering 150 - 350 m², spaced 100 m apart.
- Half of these reside in the aspen parkland, and the other half in the intact boreal forest.
- Most CIPHA plots continue to be measured annually
- many have been harvested for tree-ring analysis.

Canadian Provincial PSPs (via Peng)

- 96 plots, 49 of which are located in the ABoVE domain (Alberta, Manitoba, and Saskatchewan)
- measured approximately every 5 12 years going back to the 1950s and 1960s
- dominated by black spruce (36%), white spruce (15%), lodgepole pine (13%), aspen (12%), and jack pine (9%).
- Will be analyzed for mortality by stand characteristics, number of inventories, disturbance history and stand age.
- We will explore the effect of selecting additional PSPs that were only measured twice for analyzing mortality events.
- We will select only unmanaged mature sites that are free from recent human and fire disturbance.

Obj. 2 – Boreal Field Studies

New field data collection efforts

- We will build stand-level chronologies for 45 forest sites stratified across 3 regions of Interior Alaska: Fairbanks, Delta Junction and Tok.
- All white spruce, aspen and birch stands & 3 of the black spruce stands are part of the CAFI study.
- Augment the study design with black spruce plots in each region from the Bonanza Creek LTER Extended Site Network or from Boby et al. (2010).
- Build stand-level ring width chronologies for replicate stands of each species comprised of samples from live and dead individuals.
- On a subset of our stands, measure the ¹³C signature of rings on dead trees that precede mortality.
- On live trees, measure the ¹³C signature in rings that are precedent and antecedent in time to stand-level mortality events.
 - This will allow us to examine differential moisture stress as a driver of mortality.
- Chronologies will be used along with those at the CIPHA sites to examine stand-level covariance between climate, growth and mortality

Obj. 2 – Boreal Field Studies

Planning / timing of field efforts

- We plan to be in the field each summer 2016, 2017, 2018
- Focus on tree ring chronologies at CAFI sites & BNZ LTER
- Also ¹³C isotope analysis from cores & samples

Obj. 2 – Boreal remote sensing

We will use NDVI products from the latest GIMMS3g (AVHRR) and MODIS series.

- GIMMS3g is a well documented product for long-term vegetation dynamics, with a multi-decadal time series (1982 – present)
- MODIS 250m (~232m) NDVI 16-day products from Terra (MOD13Q1) and Aqua (MYD13Q1) for 2000 & 2002 - present, respectively.
 - Explore nadir BRDF corrected MODIS data at 250m from MCD43A1
- We will also take advantage of any finer-resolution (e.g., Landsat 30 m) NDVI products that become available

Airborne Remote Sensing

- Existing airborne remote assets to be used
 - Not certain of current data availability
 - lidar data would be of interest
 - Wulder's; GLiHT; LVIS; others?
- Potential uses for new airborne data
 - Lidar, Lidar and Lidar for canopy structure
 - These data would provide us unique information
 - which trees are experiencing greater mortality? taller / larger trees?
 - Can we map densification of arctic shrubs?
 - Lots of other stuff beyond our project (e.g. surface deformation, thermokarst progression, etc)

Objective 3: *Modeling* boreal tree species productivity, mortality & distribution

University of Virginia Forest Model Enhanced (UVFME)

- Individual tree / species model of forest ecosystem
- Tree growth modulated by soil nutrients and water, climate, and canopy shading
- Species niche parameters drive competition (growth rates, regeneration needs, sizes, longevities)
- Forest community and species response to climate and disturbance regimes using ensemble approach
- Site simulation at continental scale

Input Data UVAFME

Minimum requirements:

- Avg monthly climate data from at least 30 years data (tmax tmin, total precip, radiation)
- Soil carbon and nitrogen in organic & mineral soils (tons per hectare)
- Soil water holding characteristics
 - (for soil: best source and scale across Alaskan study domain?)
- Species parameters (update per inventory where possible, otherwise literature)
 - Historical range distribution, Age Max, DBH max, Height max, Growth curves,
 Seed dispersal and survival, Tolerance for climate, shade, drought, and nutrients

Input Wish List:

- Slope, aspect, climate gridded for historical and future projections
- Species mortality details (markers: drought, insects, fire)
- Stand age OR time since disturbance with percent cleared, stand details
- Stem density by species and DBH size class

Geospatial Data Products to be produced

Objective 1 – Arctic veg mapping

- Proportional (0-100%) shrub cover maps of North Slope
- Proportional lichen cover maps of North Slope
- Both of these for 2000 & 2010 (later?) for change

Objective 2 – Boreal veg mapping & analysis of drivers

- Probability maps of boreal tree mortality
 - Press and Pulse NDVI changes included in statistical "machine learning" approach

Objective 3 – Boreal modeling of distribution / NPP change

- Species productivity & range suitability map outputs
 - Cal/val'd maps (site inventory-like predictions)
- Probability maps of species-specific boreal tree mortality & northern range expansion

