

Climate and Land Use Change Earth Resources Observation and Science (EROS) Center Landsat Surface Reflectance and Landsat Collection 1

U.S. Department of the Interior U.S. Geological Survey

Steve Foga, SGT Inc. ABoVE Webinar Friday, 21 April 2017

Outline

Surface Reflectance
 Governing Theory
 Landsat 4-7 (LEDAPS)
 Landsat 8 (LaSRC)
 Data Products
 Collection 1

 General concept & impact of atmospheric contamination

https://landsat.usgs.gov/atmospheric-transmittance-information

 $\rho_{TOA} = \boldsymbol{0}_{3}, \boldsymbol{H}_{2}\boldsymbol{0}, \boldsymbol{aerosols}$ $\left[\rho_{atm} + \frac{T_{d}T_{u}\boldsymbol{\rho}^{s}}{1 - s_{atm}\boldsymbol{\rho}^{s}}\right]$

Where:

- *ρ*_{TOA} = Top of Atmosphere reflectance
- O₃, H₂O, aerosols = types of molecules
- ρ_{atm} = atmospheric spherical albedo
- T_d = downward atmospheric transmission
- T_u = upward atmospheric transmission from surface to sensor
- ρ^s = surface reflectance

https://landsat.usgs.gov/atmospheric-transmittance-information

- Landsat bandpasses optimized for atmospheric windows
- Visible bands more impacted by atmosphere

* MSS bands 1-4 were known as bands 4-7, respectively, on Landsats 1-3

https://landsat.usgs.gov/how-does-landsat-8-differ-previous-landsat-satellites

- Different gases absorb at different wavelengths
- Visible impacted most by aerosols (not shown), ozone
 - Other molecules to lesser degree
- Longer wavelengths more affected by water vapor

http://www.ces.fau.edu/nasa/module-2/how-greenhouse-effect-works.php

Basic assumptions

- Lambertian target
- Top of Atmosphere (TOA) reflectance as input
 - TOA ordered through USGS now corrected with per-pixel solar zenith angles

http://apps.usd.edu/coglab/schieber/trb2000/sld038.htm

- <u>Landsat Ecosystem Disturbance Adaptive</u> <u>Processing System (LEDAPS)</u>
- Data product
 - Developed at NASA GSFC
 - Landsat TM (4-5) and Landsat ETM+ (7)
 - Project began in 2004
 - Running at EROS since 2012
- Algorithm overview
 - Uses dark, dense vegetation (DDV) method to invert aerosols
 - Uses auxiliary data to estimate other gases, 6SV for radiative transfer

Process (1/2)

- Estimate aerosol
 - Dark, dense vegetation (DDV) inversion method
 - Mask cloud, cloud shadow, snow/ice, water (LEDAPS' own algorithm)
 - Ratio of band 1 (blue) and band 3 (red) to band 7 (SWIR 2)
 - Kaufman et al., 1997 find inversion accuracy is better with more DDV in the scene

Kaufman et al., 1997, Figure 3 Hollow = blue band; Filled = red band

Process (2/2)

- Estimate ozone
 - Total Ozone Mapping Spectrometer (TOMS)
- Estimate air temperature, surface pressure, precipitable water
 - National Centers for Environmental Prediction (NCEP) Reanalysis
- Estimate all variables at different altitudes
 - Radiative transfer model
 - Second Simulation of a Satellite Signal in the Solar Spectrum vector code (6SV)

Efficacy

exists

 Maiersperger et al., 2013
 Regional assessment of aerosol, reflectance values
 AOT disagreement, subsequent SR disagreement higher where less vegetation

Maiersperger et al., 2013, Figure 2

Efficacy

- Most recent: Claverie et al., 2015
- Accuracy, Precision, Uncertainty (APU)
 - Aerosol retrieval
 - Compared against Aerosol Robotic Network (AERONET); error budget ~5%
 - Reflectance
 - Compared against MODIS MO/YD09 (surface reflectance) data; error budget ~7%

- APU for aerosol retrieval
 - Error budget = pink line
 - Lower APU is better
 - X = SR value
 - Y = APU
 - All "within spec," works better in longer wavelengths

Claverie et al., 2015, Figure 4

APU for reflectance

- BRDF adjustments using MODIS data
- Error budget = pink line
- All "within" or "near" spec, dips out of spec when sample size decreases at higher aerosol concentrations

LaSRC

Landsat 8 Surface Reflectance Code (LaSRC)

Data product

- Developed at NASA GSFC
- Provisional products orderable from EROS since 2015
- Latest version (released March 30, 2017) considered stable

Algorithm overview

- Takes advantage of coastal aerosol, cirrus bands
- Uses MODIS climate grids for auxiliary data
- Separate retrieval algorithm for pixel(s) identified as water

LaSRC

Process

Estimate aerosol

- Model: "Urban Clean" type (most applicable)
 - LEDAPS builds own model with DDV

Adapted from MODIS Collection 6 algorithm

- Uses bands 4 (red) and 1 (coastal aerosol) OR 4 and 2 (blue)
- Estimate air temperature, water vapor
 - MOD09CMG (Climate Modeling Grid)
- Estimate Ozone
 - MOD09CMA
- Retrieval performed over all pixels
 - Uses different set of aerosol residuals over water than land

Efficacy

Some characterization published in original paper
 MODIS, AERONET observations alongside LaSRC

Vermote et al., 2016, Figure 8a OLI Band 1 (UL), Band 2 (UR), Band 3 (LL), Band 4 (LR)

OLI Band 5 (UL), Band 6 (UR), Band 7 (LL), NDVI (LR)

LaSRC

Efficacy

Comparisons with other data sets (red band)

Vermote et al., 2016, Figure 7.

LaSRC

Efficacy

- Other comparisons between LaSRC, LEDAPS, MODIS SR algorithms
 - Holden and Woodcock, 2016; Roy et al., 2016; Vogelmann et al., 2016
 - General findings
 - Agreement varies by band(s), land cover
 - More disagreement in shorter wavelengths (visible)
 - Enhanced Vegetation Index (EVI) agrees more than Normalized Difference Vegetation Index (NDVI)
 - Blue band in EVI helps cancel out atmospheric discrepancy in red/NIR bands

- Order data
 - EarthExplorer (EE; <u>https://earthexplorer.usgs.gov/</u>)
 - EROS Science Processing Architecture (ESPA; <u>https://espa.cr.usgs.gov/</u>)
 - EE sends your orders to ESPA for SR processing

≈USGS

scene_list.txt

LE07_L1TP_044034_20170129_20170224_01_T1 LC08_L1TP_044034_20170121_20170218_01_T1 LE07_L1TP_044034_20170113_20170208_01_T1 LC08_L1TP_044034_20170105_20170218_01_T1 LE07_L1TP_044034_20161228_20170218_01_T1 LC08_L1TP_044034_20161220_20170218_01_T1

Other options:

- TOA Reflectance
- Brightness Temperature
- CFMask ("legacy" version of QA band that now comes with all Level-1 data)
- SR-based spectral indices (NDVI, EVI, NBR, etc.)
- Multiple output formats (ENVI, NetCDF, etc.)
- Reproject, subset, pixel resizing, statistics

Order data

- ESPA API
 - https://github.com/USGS-EROS/espa-api
 - Submit orders, check status, check available products & applicable order options
 - Returns messages in JavaScript Object Notation (JSON)

LEDAPS

Landsat 7 ETM+ WRS-2 Path 22, Row 33 Acq.: 28 February 2014 4,3,2 (false color IR)

- LEDAPS
 - pixel_qa band

	Bi t	Value	Cumulative Sum	Interpretation
	0	1	1	Fill
	1	2	3	Clear
	2	4	7	Water
	3	8	15	Cloud shadow
	4	16	31	Snow
	5	32	63	Cloud
	6	64	127	Cloud Confidence 00 = None
	7	128	255	01 = Low 10 = Medium 11 = High
	8	256	511	Unused
2	9	512	1023	Unused
	10	1024	2047	Unused
0	11	2048	4095	Unused
	12	4096	8191	Unused
2	13	8192	16383	Unused
	14	16384	32767	Unused
•	15	32786	65553	Unused

- Bit-packed to allow flags for multiple conditions
- Most of this data available through Level-1 QA band (uses cfmask algorithm), but water bit added, and 'cloud' bit dilated in Level-2 processing.

LEDAPS

radsat_qa band

Bit	Value	Cumulative Sum	Description
0	1	1	Data Fill Flag (0 valid data, 1 invalid data)
1	2	3	Band 1 Data Saturation Flag (0 valid data, 1 saturated data)
2	4	7	Band 2 Data Saturation Flag (0 valid data, 1 saturated data)
3	8	15	Band 3 Data Saturation Flag (0 valid data, 1 saturated data)
4	16	31	Band 4 Data Saturation Flag (0 valid data, 1 saturated data)
5	32	63	Band 5 Data Saturation Flag (0 valid data, 1 saturated data)
6	64	127	Band 6 Data Saturation Flag (0 valid data, 1 saturated data)
7	128	255	Band 7 Data Saturation Flag (0 valid data, 1 saturated data)

	0
	2
	6
	8
	10
	12
	14
	30
	32
	46
	62
	128
	160
	168
	170
	172
	174
	190

- Bit-packed to allow flags for multiple conditions
- Derived from L1 DNs (== 255)
- Saturation more common over clouds in shorter wavelengths (e.g., visible)
- Can pull pixels with any saturation (>0) or by band.

LEDAPS

sr_atmos_opacity band

≥USGS

- Scaled (* 0.0010)
- Unitless
- LEDAPS' estimate of atmospheric contamination
- Interpretation:
 - < 0.1 Clear
 - 0.1-0.3 Average
 - > 0.3 Hazy
- Here, no data are above 'Clear' (max is 0.049)

LEDAPS

- Filtered bands
- Ignore: cloud, cloud shadow, snow/ice, saturation

Example of final masked output.

LaSRC

Landsat 8 OLI/TIRS WRS-2 Path 47, Row 27 Acq.: 14 October 2013 5,4,3 (false color IR)

	Bit	Value	Cumulative Sum	Interpretation
	0	1	1	Fill
	1	2	3	Clear
	2	4	7	Water
	3	8	15	Cloud shadow
	4	16	31	Snow
	5	32	63	Cloud
	6	64	127	Cloud Confidence 00 = None
	7	128	255	01 = Low 10 = Medium 11 = High
3	8	256	511	Cirrus Confidence 00 = Not set
2	9	512	1023	01 = Low from OLI Band 9 reflectance 10 = Medium from OLI Band 9 reflectance 11 = High from OLI Band 9 reflectance
5	10	1024	2047	Terrain Occlusion
	11	2048	4095	Unused
2	12	4096	8191	Unused
	13	8192	16383	Unused
30	14	16384	32767	Unused
	15	32786	65553	Unused
32	•	Include	es cirrus bits,	otherwise same

as L4-7 pixel_qa

- LaSRC
 - radsat_qa

Bit	Value	Cumulative Sum	Description
0	1	1	Data Fill Flag (0 valid data, 1 invalid data)
1	2	3	Band 1 Data Saturation Flag (0 valid data, 1 saturated data)
2	4	7	Band 2 Data Saturation Flag (0 valid data, 1 saturated data)
3	8	15	Band 3 Data Saturation Flag (0 valid data, 1 saturated data)
4	16	31	Band 4 Data Saturation Flag (0 valid data, 1 saturated data)
5	32	63	Band 5 Data Saturation Flag (0 valid data, 1 saturated data)
6	64	127	Band 6 Data Saturation Flag (0 valid data, 1 saturated data)
7	128	255	Band 7 Data Saturation Flag (0 valid data, 1 saturated data)
8	N/A	N/A	Not used
9	512	1023	Band 9 Data Saturation Flag (0 valid data, 1 saturated data)
10	1024	2047	Band 10 Data Saturation Flag (0 valid data, 1 saturated data)
11	2048	4095	Band 11 Data Saturation Flag (0 valid data, 1 saturated data)

- Bit-packed to allow flags for multiple conditions
- Derived from L1 DNs (== 65535)
- Saturation very uncommon in OLI; only 13 pixels saturated in this scene
 - Specular, impervious targets
- Can pull pixels with any saturation (> 0) or by band.

LaSRC

sr_aerosol_qa

Bit	Cumulative Sum	Value	Description
0	1	1	Fill Value
1	2	3	Aerosol Retrieval – Valid
2	4	7	Aerosol Retrieval – Interpolated
3	8	15	Water Pixel
4	16	31	Water Aerosol Retrieval Failed – Needs Interpolated (Internal Use Only)
5	32	63	Neighbor of Failed Aerosol Retrieval (Internal Use Only)
6	64	127	Aerosol Content 00 – Climatology
7	128	255	01 – Low 10 – Medium 11 – High

- Bit-packed to allow flags for multiple conditions
- Describes conditions under which aerosols were retrieved; aerosol content
- Recommended use: remove "high" aerosol pixels
 - Depending on application sensitivity, remove "interpolated" pixels?

LaSRC

- Filtered bands
- Ignore: cloud, cloud shadow, snow/ice, saturation, high aerosol

Example of final masked output.

Caveats

- Software will not run if solar zenith angle > 76 degrees (low sun elevation.)
 - The amount of uncertainty greatly increases past this angle (passes through more columns of atmosphere.)
 - More likely over poles.
 - Efficacy of corrections impacted by auxiliary data spatial, temporal resolutions
- Auxiliary data gaps
 - Instrument failure, data corruption, etc.
 - List of all missing dates: <u>https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products</u> > "Caveats and Constraints"

Error vs. SZA

Landsat Collection 1

- New data standard
- All data radiometrically cross-calibrated to Landsat 8
- Data placed into tiers
 - Tier 1 ("T1")
 - Geometric RMSE <12m</p>
 - L1TP (formerly L1T) for L4-7, L1TP or L1GT for L8
 - Stackable
 - Tier 2 ("T2")
 - Geometric RMSE >12m
 - L1GT or L1GS (formerly L1G) for L4-7, L1GS for L8
 - Typically lack of GCPs due to clouds, scenes without land
 - Less likely to be stackable
 - Real-Time ("RT")
 - Still needs definitive parameters (bumper mode for L7; TIRS SSM for L8)
 - "RT" products deleted once moved into "T1" or "T2"

Landsat Collection 1

File naming convention change

Pre-Collection

LXSPPPRRRYYYYDDDSTNVR

(e.g., LC80120542014301LGN00

	1		
	<u>ot</u> i	l n r	

LXSS_LLLL_PPPRRR_YYYMMDD_yyymmdd_CX_TX (e.g., LC08_L1TP_039037_20150728_20160918_01_T1)

- L Landsat
 X Sensor ("O" = OLI; "T" = TIRS; "C" = OLI/TIRS)
 S Satellite ("8" = Landsat 8, etc.)
 PPP Path
 RRR Row
 YYYY Year of Acquisition
 DDD Julian Date of Acquisition
 STN Receiving Station
- VR Version Number

L Landsat

- X Sensor ("O" = OLI; "T" = TIRS; "C" = OLI/TIRS)
- SS Satellite ("08" = Landsat 8, etc.)
- LLLL Processing correction level ("L1TP" = Precision Terrain; "L1GT" = Systematic Terrain; "L1GS" = Systematic)
- PPP Path
- RRR Row
- YYYY Year
- MM Month of acquisition
- DD Day of acquisition
- yyyy Year of processing
- mm Month of processing
- dd Day of processing
- CX Collection number ("01", "02", etc.)
- TX Collection category ("RT"=Real-Time; "T1"=Tier 1; "T2"=Tier 2)

Collection 1

Timeline

- All Landsat TM and ETM+ now processed to Collection 1
- OLI/TIRS complete for CONUS, global processing to continue through June 2017.
- Pre-Collection no longer available in ESPA (as of April 08, 2017.)
- Pre-Collection forward processing halting April 28, 2017.
- Status updates on Landsat Mission Webpage home: https://landsat.usgs.gov/

Resources

Landsat mission webpage: <u>https://landsat.usgs.gov</u>

- Collections: <u>https://landsat.usgs.gov/landsat-collections</u>
- Surface Reflectance: <u>https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products</u>
 - LEDAPS
 - Product Guide: https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf
 - Release notes: <u>https://landsat.usgs.gov/sites/default/files/documents/ledaps_release_notes.pdf</u>
 - LaSRC
 - Product Guide: <u>https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf</u>
 - Release notes: <u>https://landsat.usgs.gov/sites/default/files/documents/lasrc_release_notes.pdf</u>
- Landsat data: <u>https://earthexplorer.usgs.gov/</u>
 - ESPA: <u>https://espa.cr.usgs.gov/</u>

References (1/2)

Surface Reflectance theory

- Governing theory: Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381. <u>http://dx.doi.org/10.1080/01431168808954942</u>.
- Dark dense vegetation: Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298. <u>http://dx.doi.org/10.1109/36.628795</u>.

LEDAPS algorithm

- Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1):68-72. http://dx.doi.org/10.1109/LGRS.2005.857030.
- Schmidt, G.L., Jenkerson, C.B., Masek, J., Vermote, E., and Gao, F. (2013). Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description: U.S. Geological Survey Open-File Report 2013–1057, 17 p.
- Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing 35:675-686. http://dx.doi.org/10.1109/36.581987.

LEDAPS validation

- Claverie, M., Vermote, E. F., Franch, B., and Masek, J. G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Environment 169:390-403. <u>http://dx.doi.org/10.1016/j.rse.2015.08.030</u>.
- Ju, J., Roy, D. P., Vermote, E., Masek, J., and Kovalskyy, V. (2012). Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sensing of Environment 122:175-184. http://dx.doi.org/10.1016/j.rse.2011.12.025.
- Maiersperger, T., Scaramuzza, P., Leigh, L., Shrestha, S., Gallo, K., Jenkerson, C., and Dwyer, J. (2013). Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data. Remote Sensing of Environment 136:1-13. http://dx.doi.org/10.1016/j.rse.2013.04.007.
- Vermote, E. F., and Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research: Atmospheres (1984–2012) 113(D23). <u>http://dx.doi.org/10.1029/2007JD009662</u>.

References (2/2)

LaSRC algorithm

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2016.04.008.

LEDAPS-LaSRC-MODIS comparisons

- Holden, C. E., & Woodcock, C. E. (2016). An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations. *Remote Sensing of Environment*, 185, 16-36. <u>http://dx.doi.org/10.1016/j.rse.2016.02.052</u>.
- Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57-70. http://dx.doi.org/10.1016/j.rse.2015.12.024.
- Vogelmann, J. E., Gallant, A. L., Shi, H., & Zhu, Z. (2016). Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment, 185, 258-270. <u>http://dx.doi.org/10.1016/j.rse.2016.02.060</u>.
- Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., ... & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, 243-257. http://dx.doi.org/10.1016/j.rse.2016.03.036.

