

ABoVE Science Cloud on ADAPT/Explore

Liz Hoy - NASA Carbon Cycle and Ecosystems Office Jim Shute, Ryan Forbes, Ellen Salmon, Matt Stroud & others - NCCS Team Mark Carroll - NASA Data Science Group and Innovation Lab & ABoVE Science Team

- Background
- NCCS Capabilities
- Large Datasets
- Analysis Ready Products from the Innovation Lab
- ASC Research Highlights
- Account Setup
- Demos
- Questions

ABoVE Data Workflow

Augmented from Rüegg et al 2014 in Front Ecol Environ

NASA Center for Climate Simulation (NCCS) Geospatial Capabilities Briefing

Jim Shute NCCS Cloud Computing and Data Services (CCDS) Lead james.k.shute@nasa.gov

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

- NCCS Mission
- NCCS Systems
- Functional Area Overviews
- Spatial Platform
- GIS Development Paradigm
- GIS Development Options
- Example Workflows
- Accessing the Systems
- Demo
- Strengths and Challenges

NCCS Mission

The NCCS provides high performance computing for NASA-sponsored scientists and engineers. Our integrated set of computational capabilities includes High Performance Computing, Cloud Computing, Analytics, Data Sharing and Tools, Visualization, and Climate Data Services. The purpose of the NCCS is to enhance NASA capabilities in Earth science, with an emphasis on weather and climate prediction, and to enable future scientific discoveries that will benefit humankind.

ABoVE Science Team Meeting (ASTM5), 2019

Building 28, Goddard Space Flight Center

Piers J. Sellers Data Visualization Theater

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

NCCS Systems

- NCCS flagship high performance computing (HPC) cluster
- Upgraded every 1 to 2 years with scalable computing units (SCUs)
 - Recently deployed SCU16
 - SCU17 inbound (late '22)
- Platform specifications
 - 3,564 nodes
 - 127,232 CPU cores (5.57 PFLOPs)
 - 573TB RAM
 - 48PB GPFS file storage

Discover SCU 16

Discover-based analysis Moder-Ers Rerespective analysis for Research and Applications (MERA-C) Precipitation Rate [mm/day] Climate Moar

Centralized data store, accessible by all NCCS platforms/subsystems.

- CSS 1 15PB usable storage
- CSS 2 15PB usable storage
- CSS 3 inbound (Q2 '22)

- ABoVE: 80 TB
- Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) datasets, including over 130 archived as part of ABoVE.
- National Snow and Ice Data Center (NSIDC) DAAC datasets, including LVIS products archived in support of ABoVE.
- Alaska Satellite Facility (ASF) datasets related to L-band SAR
- AMSR-2: 5 TB
- AVHRR/Polar: 40 TB on ADAPT and 10 GB on CSS
- **CFHA: 250 TB**
- ► CMIP5: 105 TB
- CREATE-IP: 79 TB
- CSDA-Spire: 30 TB

Note: Access permission required, please contact NCCS suppor

- DSCOVR: 72 TB (L1B)
- DSCOVR: 72 TB (L2_CLOUD_03)
- FLDAS: 40 TB
- ► GeoMIP: 14 TB
- ► Geostationary (GOES): Ingest starting now, planning for 1 PB
- GEOS-IT: 420 TB
 Note: Public access coming soon.
- ► GEOS-5 Nature Runs (g5nr): 5 PB
- ► HIMAT Snow Reanalysis: 5 TB
- ► ICEBridge: 2 TB
- ► ICESat: 8 TB
- ► ICESat-2: 161 TB
- ▶ IMERG: 15 TB
- Landsat: 186 TB
- MAIAC: 107 TB

Subset of datasets stored on CSS

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

CSS 1 and 2 (30PB total usable storage)

ADAPT/Dataportal

- Original virtualization environment
- Three subsystems
 - Legacy ADAPT hypervisors
 - Legacy OpenStack on-premise cloud
 - Dataportal data sharing applications/websites
- Platform specifications
 - 144 hypervisors
 - 3,456 CPU cores
 - 37TB RAM
 - 6PB GPFS file storage
 - Supports approximately 350 virtual machines
 - Multiple bare metal GPU systems

Nvidia DGX Next generation 8-GPU node

PRISM 22-node GPU cluster

- Next generation on-premise cloud
- Multiple availability zones (B28 and B32)
- Current specifications
 - 104 hypervisors
 - 4,352 CPU cores
 - 28.6TB RAM
- Full operating capability specifications (Q4 '22)
 - 280 hypervisors
 - 8,704 CPU cores
 - 72TB RAM
 - 6PB next generation storage

Explore Cloud Control Plane and Initial Compute

Explore Cloud OpenStack Web Interface

ор	enstac	k. п noo	s + ada	płónz •											4 ک	shute •
Project		V API Access	Pn	oject / Compute / Ins	tances											
	Compute	~	In	stances												
		Overview							Instance ID				Fiter Q Laur	ch Instance D Doiete In	starces More Actio	icis *
		Images	Disp	playing 16 items										_		
		Key Pairs	0	Instance Name	Image Name	IP Address	Flavor	Key Pair	Status		Availability Zone	Task	Power State	Time since created	Actions	
	Volumes	>	0	dpjhmidev01		10.81.38.48	gis-standard		Active	÷	compute	None	Bunning	1 month, 3 weeks	Create Snapshot	·
	Network	>	0	dpgisdev07	362	15.81.38.37	gis-standard	jomilis1_adapt_keys	Active	<i>w</i>	compute	None	Bunning	3 months, 1 week	Create Snapshot	•
Identity		>	0	dpdrgdev07		10.81.38.47	gis-standard		Active	ω.	compute	None	Bunning	4 months, 1 week	Create Snapshot	•
			0	dpdgdev06		10.81.38.46	gis-advanced	4	Active	÷	compute	None	Bunning	4 months, 1 week	Create Snapshot	•
			0	dpdrgdev05		10.81.38.45	gis-advanced		Active	<i>w</i>	compute	None	Running	4 months, 1 week	Create Snapshot	•
			0	dpdrgdev04		10.81.38.44	gis-standard		Active	÷	compute	None	Running	4 months, 1 week	Create Snapshot	٠
			0	dpdrgdw03		10.81.38.43	gis-standard		Active	a.	compute	None	Running	4 months, 1 week	Create Brapshot	•
			0	dpdrgdev02		10.81.38.42	gis-standard		Active	140	compute	None	Running	4 months, 1 week	Create Snapshot	•
			0	dpdrgdev01		10.81.38.41	gis-standard		Active	w.	compute	None	Bunning	4 months, 1 week	Create Snapshot	•
			0	dpgladev05		10.81.38.35	gis-advanced	8	Active	÷	compute	None	Burning	4 months, 1 week	Create Snapshot	•
				1.					1.0	1.0	- 10 C	1.00			Carto a line	

Spatial Platform Logical Architecture

GIS Development Paradigm

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

GIS Development Options

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

Example Workflow – Automation

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

NCCS Spatial Analytics Platform – https://maps.nccs.nasa.gov

17

Source Data (Multiple types)

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

Example Workflow – Service Publishing

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

Accessing the Systems

Moderate Access Level Required Smartcard

RSA Tok

Agency User

Smartcard Log In Alternate User Log In Access Level: High Full access to authorized application

Đ

- Secure shell (ssh)
 - Majority of users
- Web services
 - Esri Portals
 - Custom applications
 - Data sharing services
- Windows desktop access
 - Guacamole (open source, Citrix equivalent)

- Abundant compute resources
- Abundant storage resources
- NASA-wide Enterprise License Agreement (ELA)

Strengths

- Latest versions of the Esri software (10.9.1)
- Enterprise software (ArcGIS Server and Portal)
- Desktop software (ArcGIS Pro and ArcGIS Desktop)
- Proximity of data archives to GIS analysis and visualization capabilities
- Bridging the gap between Linux and Windows
- Full life-cycle support
 - Analysis (Linux) > Publication (Windows) > Visualization (Web)

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

Esri License Breakdown

Row Labels	Sum of License Count
3D Analyst	30
ArcGIS for Desktop Advanced	30
ArcGIS Image Server	8
ArcGIS Pro for Desktop Advanced	30
ArcGIS Server Enterprise Advanced	16
ArcGIS Server Network Analyst Extension Standard	4
ArcGIS Workflow Manager Extension Advanced	4
Geostatistical Analyst	30
Network Analyst	30
Portal for ArcGIS (qty is # of seats)	250
Spatial Analyst	30
Tracking Analyst	5
Workflow Manager	5
Grand Total	472

- Most users do not consider their work to be GIS/geospatial
- Low adoption of:
 - Esri Portal application capabilities
 - Esri ArcGIS Server web service capabilities
- Filesystem stability
 - Will be mitigated with arrival of next generation storage platforms
- Finding time to automate critical workflows, due to context switching, etc.

Questions?

Contact Information												
NCCS Cloud Computing and Data Services (CCDS) Lead	Jim Shute (james.k.shute@nasa.gov)											
NCCS GIS Manager	Ryan Forbes (ryan.s.forbes@nasa.gov)											
NCCS Website	https://www.nccs.nasa.gov											
NCCS Spatial Analytics Platform	https://maps.nccs.nasa.gov											
NASA Disasters GIS Platform	https://maps.disasters.nasa.gov											

- ABoVE Science Cloud is part of ADAPT/Explore
- ADAPT has both Linux & Windows Virtual Machines (VMs)
- Incorporates storage, compute, and cloud computing capabilities
- Designed for large-scale data analytics

Info on ADAPT:

https://www.nccs.nasa.gov/systems/ADAPT

>12 PB of Maxar Imagery Available on ADAPT

To access ADAPT & Maxar Imagery: <u>https://above.nasa.gov/sciencecloud.html</u>

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

► ABoVE: 80 TB

- Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) datasets, including over 130 archived as part of ABoVE.
- National Snow and Ice Data Center (NSIDC) DAAC datasets, including LVIS products archived in support of ABoVE.
- Alaska Satellite Facility (ASF) datasets related to L-band SAR.
- AMSR-2: 5 TB
- AVHRR/Polar: 40 TB on ADAPT and 10 GB on CSS
- ► CFHA: 250 TB
- ► CMIP5: 105 TB
- CREATE-IP: 79 TB
- CSDA-Spire: 30 TB
- DSCOVR: 72 TB (EPIC 03S02AI)
- ► DSCOVR: 72 TB (L1B)
- DSCOVR: 72 TB (L2_CLOUD_03)
- ► FLDAS: 40 TB
- ► GeoMIP: 14 TB
- Geostationary (GOES): Ingest starting now, planning for 1 PB
- ► GEOS-5 Nature Runs (g5nr): 5 PB

- HIMAT Snow Reanalysis: 5 TB
- ICEBridge: 2 TB
- ► ICESat: 8 TB
- ICESat-2: 161 TB
- ► IMERG: 15 TB
- 🕨 Landsat: 186 TB
- MAIAC: 107 TB
- ► MERRA: 86 TB
- ► MERRA2: 320 TB
- Selected MODIS data: 679 TB +
- NEX GDDP: 11 TB
- ► NEX DCP30: 11 TB
- ▶ NGA: 12000 TB (~ 12 PB)

80 TB of ABoVE-Archived Data are on ADAPT

ADAPT brings together all ABoVE datasets in a single location for users.

NASA Distributed Active Archive Center (DAAC) at NSIDC LVIS Data NASA Land, Vegetation and Ice Sensor Facility

DAAC Home > Get Data > NASA Projects > Arctic-Boreal Vulnerability Experiment (ABoVE)

Arctic-Boreal Vulnerability Experiment (ABoVE)

Overview

The Arctic-Boreal Vulnerability Experiment (ABoVE) is a NASA Terrestrial Ecology Program field campaign being conducted in Alaska and western Canada, for 8 to 10 years, starting in 2015. Research for ABoVE links field-based, process-level studies with geospatial data products derived from airborne and satellite sensors, providing a foundation for improving the analysis, and modeling capabilities needed to understand and predict ecosystem responses to, and societal implications of, climate change in the Arctic and Boreal regions.

Related Links

Browse ABoVE datasets Search ABoVE datasets C Publications citing ABoVE

ABoVE project site

- 29.2 million images
- 12.8 petabytes
- Sensors
 - GE01 (1,948,067)
 - IK01 (322,417)
 - OV03 (227)
 - QB02 (3,470,713)
 - WV01 (6,362,592)
 - WV02 (11,796,075)
 - WV03 (5,234,308)
 - WV04 (13,505)

- Years
 - 1999 (10), 2000 (25,485), 2001 (34,174), 2002 (176,934), 2003 (260,623), 2004 (274,672), 2005 (252,903), 2006 (309,937), 2007 (482,251), 2008 (740,694), 2009 (802,602), 2010 (1,197,106), 2011 (1,772,616), 2012 (1,990,030), 2013 (1,914,354), 2014 (1,753,856), 2015 (1,886,852), 2016 (2,150,556), 2017 (2,297,327), 2018 (1,923,486), 2019 (1,580,714), 2020 (2,733,255), 2021 (2,560,723), 2022 (2,021,130), 2023 (5,615)

NGA/Maxar Data Coverage

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

Analysis Ready Data from the Innovation Lab

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

NCCS ABoVE GLAD ARD Product

- Landsat Analysis Ready Data (ARD) tiles are produced from Landsat Collection 2 data by the Global Land Analysis and Discovery Lab (GLAD) at the University of Maryland.
- The dataset is distributed as 16-day interval composites, with 23 intervals for each year (i.e., Interval ID 5 corresponds to DOY 65 to 80).
- We have downloaded and made available the entirety of this dataset through October 2022 across the ABoVE Study domain, including the Extended Region. There is currently a total of 18TB, with more data to come.
- The GLAD Landsat ARD C2 product has been gridded to the ABoVE Reference Grid at moderate resolution (B) and reprojected to Canada Albers Equal Area Conic (ESRI: 102001).

/css/above/glad.umd.edu/Collection2/GLAD_ARD/ABoVE_Grid

Table 1. A	Table 1. Available bands									
ID	Band									
1	Blue band									
2	Green band									
3	Red band									
4	NIR band									
5	SWIR1 band									
6	SWIR2 band									
7	Normalized brightness temperature									
8	Observation quality flag (QF)									

ABoVE.GladARD.200511.Bh002v003.001.20220919.tif

200511	data reference date, given by year and interval ID
Bh002v003	position within the ABoVE reference B grid
001	product version
20220919	production date

Potapov, P., Hansen, M.C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina A., and Ying, Q., 2020. Landsat analysis ready data for global land cover and land cover change mapping. *Remote Sensing 12, 426*; doi:10.3390/rs12030426

VHR Analysis Ready Data for Alaska

Montesano, Carrol, Neigh, Macander, Caraballo-Vega, Tamkin in prep. 2023

70 -

GE01

QB02

- 13 publications list the use of ADAPT in their acknowledgements (more are in-process)
- 39 data products using/used EXPLORE in their development (more to come)
 - 30 archived datasets at a NASA DAAC
 - 7 planned products
 - 2 public products

ENVIRONMENTAL RESEARCH LETTERS

LETTER

Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon

Matthew J Macander^{1,*}⁽⁰⁾, Peter R Nelson²⁽⁰⁾, Timm W Nawrocki³, Gerald V Frost¹⁽⁰⁾, Kathleen M Orndahl⁴⁽⁰⁾, Eric C Palm⁵⁽⁰⁾, Aaron F Wells⁶⁽⁰⁾ and Scott J Goetz⁴⁽⁰⁾

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems

Dong Chen 🖄 🖾, Tatiana V. Loboda 🖾, Joanne V. Hall 🖾

Global Change Biology

PRIMARY RESEARCH ARTICLE

Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing

Jonathan A. Wang 🔀, Damien Sulla-Menashe, Curtis E. Woodcock, Oliver Sonnentag, Ralph F. Keeling, Mark A. Friedl

First published: 22 August 2019 | https://doi.org/10.1111/gcb.14804 | Citations: 26

Cover Change

≤ -20% -19.9 – -15% -14.9 – -10%

985-2020

Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon

Macander et al. (2022) Environmental Research Letters.

- Documented increases in Deciduous and Evergreen Shrub, Conifer and Broadleaf Tree top cover.
- Associated decreases in Graminoid and Lichen top cover with fire disturbance and shrub increase
- These changes are highly relevant to resource management applications, including wildlife habita

A Database of Simulated Vegetation Change at Sites Across the Taiga-Tundra Ecotone

P. Montesano, B. Osmanoglu, H. Epstein, E. Heffernan, B. Gay

These simulations are assembled in a database to explore the variation in expected changes in vegetation structure and composition across the taiga-tundra ecotone in North America. The forest growth model **SIBBORK-TTE** is run on ADAPT to track the growth of individual trees and shrubs through time (1900-2100) and across bioclimatic gradients using spatial inputs from ArcticDEM, SoilGRIDS, MERRA2, CMIP6, & NASA cloud cover

200 years of change in vegetation structure & composition at sites in the taiga-tundra ecotone

Modeling Emissions and Analyzing Variability in Burned Areas

S. Potter, B. Rogers, et al.

- Over 8,000 jobs submitted on ADAPT
- Using ORNL DAAC datasets to build a statistical model of emissions
- Using MODIS and Landsat data to identify burned areas & model carbon emissions
- Applying a combustion model to estimate carbon emissions from belowground and aboveground sources (for 2001-2019)

Using High-resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodies

Mullen et al., 2023 (in review)

-40

Trained model with >13,000 hand-delineated water bodies on PRISM GPU cluster. Training data development relied heavily on 2 m Maxar WorldView imagery from NGA archive.

When researchers publish research based on the use of NCCS resources, please acknowledge these NASA-provided resources with language similar to this example:

"Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center."

Gaining Access – ABoVE Website:

- Instructions under "Data", "ABoVE Science Cloud", link to Science Cloud Setup Instructions
- Need NASA identity, IT Security training, RSA soft token, process takes a while
- Optional: signed NGA paperwork, new version in process
- Links to monthly webinars, other instructional videos

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

NCCS Website: <u>https://www.nccs.nasa.gov/systems/adapt</u>

- How to login, data locations, Windows FAQ, ABoVE FAQ, including orthorectification instructions
- Instructional Video Collection: <u>https://www.nccs.nasa.gov/nccs-users/instructional/instructional-videos</u>
- Account Setup Questions <u>elizabeth.hoy@nasa.gov</u>
- Questions/Issues Using NCCS Systems <u>support@nccs.nasa.gov</u>

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

- Accessing ADAPT
 - Linux VM
 - Windows VM
- Jupyter Hub
- Data Discovery Tool

• Global View (polygons are hidden at this scale)

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

• Zoom to area of interest (polygons enabled; reduces server impact)

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

• Click a polygon to see the attributes, to include image thumbnail

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

• Click the previewurl "More info" link or the thumbnail to see the image in more detail

• Click Spatial Search – select point/line/polygon, set buffer distance

• After selection, system will generate buffer and zoom to location

• Click Footprints to see the images within that buffered location

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

• Click the Download button () to save the results as a csv file

•	●●● AutoSave ● @ 6 日 日 グ v C …													N Footprints (1) ∨ Q													Q				
Hor	ne Inse	ert Draw	Page Layou	t Formula	as Data	a Re	view V	'iew A	utomate	e ♀ Tell me	e																		🖓 Comn	nents	🖻 Share
r C	<u> </u>	at C	alibri (Body)	v 12 v	Δ^ Δ~	Ξ	-	2 ×	ab, y	Wran Text y	G	aneral				Norm	nal	Rad	Good	Neutral	Calcul	ation		🞞		∑ AutoSum	• A	1			
L	C Co	ору ч	morr (body)					<i>.</i>	ce .	map lext •		chicitai			•	- TOTAL		Sueleneten T	lagut	University Coll	Nete	,		* #**		😺 Fill 🗸	ZY V				
Pa	ste ダ Fo	ormat B	IU▼	H • 💁 •	- <u>A</u> -	=	= =	+= →=	1 E	Merge & Center	• \$	• % •	.00 →0	Formatti	nal Format ing as Table	Cried	k Cell	explanatory 1	Input	Linked Cell	Note		Insert	Delet	e Format	🞸 Clear 🗸	Sort & Find & Filter Select	Sensitivity			
A1	÷	× v j	objectid																												
	A	В	C D	E	F	(G	н	1	J	к	L	М	N	0	Р	Q	R	S	т	U	V	W	х			Y			Z	AA
1 o	ojectid fr	puid st	rip_id scene_id	d status	catalog_id	d order	_id prod	_code cou	untry	spec_type acc	q_time	cloudcover	ent_lat	cent_long c	olumns ro	ws	bits_pixel	file_fmt	off_nadir sun_	elev proc	d_gsd ref	_height xtrac	ckva s_f	filename	s_filepath				sei	nsor b	bands p
2	14258826 {	F9FF8098-6 W 8480801E-5 W	V02_1030(WV02_2 V02_1030(WV02_2	2018(validated_ 2018(validated_	v1 103001008 v1 103001008	82 50581	153460: M18 153460: P18	S US		Multispectra 20 Panchromati 20	18-08-14T 18-08-14T	0.412	57.1817158 57.18176	-170.33825	9216 35840	8192	2 16 0 16	6 NITE 6 NITE	25.2	47.2	2.234	83	-25 WV	V02_2018 V02_2018	l /css/nga/W\ l /css/nga/W\	/02/1B/2018/226/ /02/1B/2018/226/	WV02_1030010082765	F00_M1BS_50581534601	0_01/WV0: W	/02	8 /
4	17317545 {0	0ADD949C-8 Q	302_10100 QB02_2	0040 validated_	v1 101001000	021 50585	5338901 M18	S US		Multispectra 20	04-05-18T	-999	57.1671086	-170.35339	7168	8192	2 16	6 NITF	6.1	51.9	2.473	83	-5.7 QB	02_20040	/css/nga/QB	02/1B/2004/139/0	B02_1010010002F1A5	00_M1BS_505853389080	_01/QB02_QB	02	4 /
5	1723621 {8	B84B2CC7-2 G	E01_10500 GE01_20	0180 pending	105001001	10 50237	764880- M18	IS US		Multispectra 20	18-06-06T	0.007	57.1860552	-170.333	10240	8192	2 16	6 NITF	27.5	55.4	2.038	83	-11.1 GE	01_20180)/css/nga/GE	01/1B/2018/157/G	E01_105001001062C60	0_M1BS_502376488040	_01/GE01_: GE	01	4 /
6	1736574 {	147670BC-C G	E01_10500 GE01_20	0180 pending	105001001	10 50237	764880 P1B	S US		Panchromati 20	18-06-06T	0.007	57.1860552	-170.333	37888	31744	4 16	6 NITF	27.5	55.4	0.509	83	-11.1 GE	01_20180	/css/nga/GE	01/1B/2018/157/G	E01_105001001062C60	0_P1BS_502376488040_	01/GE01_2 GE	01	1,
7	18525017 {2	2685145C-7 Q	302_10100 QB02_2	0040 validated_	v1 101001000	16 50585	5338901 P18	5 US		Panchromati 20 Panchromati 20	04-05-18T	-999	57.1589454	-170.35349	27648	31744	4 16		6.2	51.9	0.619	83	-5.7 QB	02_20040	Coss/nga/QB	02/18/2004/139/0 /01/18/2012/208/	(B02_1010010002F1A5	00_P1BS_505853389080	01/QB02_2QB	02	1,
9	25916695 {(0C7E5584-7 W	V02_1030(WV02_2	020 validated	v1 10300100A	A6 50542	213760 P18	s us		Panchromati 20	20-03-29T	0.176	57.166194	-170.29785	35840	29696	6 16	6 NITE	12.9	36.6	0.489	83	-12.7 WV	V01_2013	/css/nga/W\	/02/1B/2020/089/	WV02_10300100264770	200 P1BS 50542137608	01/WV02W	/02	1/
10	25916697 {1	1EA898EC-8 W	V02_1030(WV02_2	2020(validated_	v1 10300100A	A6 50542	2137601 M18	IS US		Multispectra 20	20-03-29T	0.216	57.166194	-170.29778	9216	8192	2 16	6 NITF	12.9	36.6	1.957	83	-12.7 WV	V02_2020	<pre>/css/nga/W\</pre>	/02/18/2020/089/	WV02_10300100A65BE	200_M1BS_50542137608	0_01/WV0 W	/02	8 /
11	3413937 {2	2A691EE3-1 W	V01_1020(WV01_2	2020(validated_	v1 102001009	91 50427	773200: P1B	S US		Panchromati 20	20-04-13T	0.183	57.1688566	-170.29577	27648	35840	0 16	6 NITF	33	33.7	0.683	83	-25.5 WV	V01_2020	/css/nga/W\	/01/1B/2020/104/	WV01_1020010091C99	100_P1BS_504277320010	_01/WV01 W	/01	1,
12	13654498 {	FE32A2AB-5 W	V01_1020 WV01_2	2020(validated_	v1 102001009	91 50426	508640(P1B	S US		Panchromati 20	20-04-13T	0.183	57.1688566	-170.29577	27648	35840	0 16	6 NITF	33	33.7	0.683	83	-25.5 WV	V01_2020	/css/nga/W\	/01/18/2020/104/	WV01_1020010091C99	100_P1BS_504260864060	_01/WV01 W	/01	1,
13	26024240 {8	EC159C03-E W	V01_1020(WV01_2	2020(validated_	v1 102001009	96: 50424	467840: P1B	5 US		Panchromati 20	20-04-13T	0.143	57.1660528	-170.29711	27648	35840	0 16	6 NITE	29.1	33.8	0.631	83	-24.5 WV	V01_2020	(/css/nga/W\	/01/18/2020/104/	WV01_1020010096377	300_P1BS_504246784010	_01/WV01 W	/01	1,
14	26024239 {0	00349FB8-4G	01_1020 WV01_2	0180 validated	v1 102001009 v1 1.05F+1	15 50585	556080 M18	s us		Multispectra 20	20-04-131 18-08-13T	0.145	57 1849474	-170 36931	27648	3584L 921£	6 16	6 NITE	29.1	33.8 46.7	1 912	83	-24.5 WV	01 20180	/css/nga/w\	01/18/2020/104/	F01 105001001963770	00_P185_50427732506	01/GE01 GE	01	1,
16	18430592 {	726FE7D3-F G	01_10500 GE01_20	0180 validated	v1 1.05E+1	15 50585	556080 P18	5 US		Panchromati 20	18-08-13T	0.176	57.1848977	-170.36928	37888	36864	4 16	6 NITF	24.2	46.7	0.477	83	2.5 GE	01_20180	/css/nga/GE	01/1B/2018/225/G	E01_105001001193000	0_P1BS_505855608040_	01/GE01_2 GE	01	1
17	24131903 {6	6C23B439-3 W	V02_1030 WV02_2	2013(validated_	v1 103001002	21: 50006	592321(P1B	5 YY		Panchromati 20	13-04-08T	0.067	57.16209	-170.29696	22528	35840	0 16	6 NITF	44.1	40.4	0.889	83	-34.9 WV	V02_2013	/css/nga/W\	/02/18/2013/098/	WV02_1030010021352	000_X1BS_500069232160	_01/WV02 W	/02	1,
18	24164026 {/	A99F483E-3 W	V02_1030 WV02_2	2013(validated_	v1 103001002	21:50006	592321(M1B	S YY		Multispectra 20	13-04-08T	0.067	57.1621041	-170.29682	6144	9216	6 16	6 NITF	44.1	40.4	3.555	83	-34.9 WV	V02_2013	/css/nga/W\	/02/18/2013/098/	WV02_1030010021352	000_X1BS_500069232160	_01/WV02 W	/02	8,
19	13503657 {/	ABF167AE-4 W	V02_1030(WV02_2	2020(validated_	v1 10300100A	A5 50544	484170! P1B	5 US		Panchromati 20	20-03-29T	0.487	57.1851191	-170.29727	35840	24576	6 16	6 NITF	32.2	36.6	0.642	83	-13.5 WV	V02_2020	/css/nga/W\	/02/1B/2020/089/	WV02_10300100A5C4B	F00_P1BS_50544841705	0_01/WV02W	/02	1,
20	6899385 {	1153E10D-2 W	V02_1030(WV02_2 V01_1030(WV01_2	2020 validated_	v1 10300100A	A5 50544	484170: M18	S US		Multispectra 20 Papebromati 20	20-03-29T	0.485	57.1851137	-170.2972	9216	6144	4 16	6 NITE	32.2	36.6	2.565	83	-13.5 WV	V02_2020	(/css/nga/W\	/02/18/2020/089/	WV02_10300100A5C4B	F00_M185_50544841705	0_01/WV0 W	/02	8,
22	8179140 {	FA989601-0 W	V01_1020(WV01_2	2021(validated_	v1 10200100A	AF 50528	802660 P18	s us		Panchromati 20	21-04-11T	0.034	57.1593077	-170.29938	35840	22528	8 16	6 NITE	35.1	34.5	0.703	83	-6.3 WV	V01_2011	(/css/nga/W\	/01/18/2021/101/	WV01_1020010012055	900 P1BS 505280266090	01/WV01 W	/01	1
23	2306300 {6	683120AE-7 W	V02_1030 WV02_2	2010 validated	v1 103001000	04:05280	071300 P18	S YY		Panchromati 20	10-03-20T	0	57.1482476	-170.31713	34816	35840	0 16	6 NITF	23.7	33	0.548	83	-13.1 WV	v02_2010	/css/nga/W\	/02/1B/2010/079/	WV02_10300100043E3I	000_X1BS_052807130080	_01/WV02 W	/02	1 ,
24	1275644 {	B4F81CC1-4 W	V02_1030(WV02_2	2010(validated_	v1 103001000	04:05280	0713001 M18	IS YY		Multispectra 20	10-03-20T	0	57.1482305	-170.31709	9216	9216	6 16	6 NITF	23.7	33	2.195	83	-13.2 WV	V02_2010	/css/nga/W\	/02/1B/2010/079/	WV02_10300100043E3	000_X1BS_05280713008	_01/WV02 W	/02	4 ,
25	28083232 {	FE708B46-F W	V01_1020(WV01_2	2022(validated_	v1 102001000	C3(50645	556650! P1B	S US		Panchromati 20	22-05-16T	0	57.1955967	-170.29674	35840	26624	4 16	6 NITF	31	43.4	0.654	83	-13.4 WV	V01_2022	l/css/nga/W\	/01/18/2022/136/	WV01_10200100C3CA8	000_P1BS_506455665050	_01/WV01 W	/01	1,
26	24711565 {9	9A1E4A85-7W	V01_1020(WV01_2	2021(validated_	v1 10200100A	AF 50530	097330: P18	5 US		Panchromati 20	21-04-11T	0.046	57.1493237	-170.29898	35840	34816	6 16 0 16		8.4	34.4	0.512	83	-7.9 WV	V01_2021	(/css/nga/W\	/01/18/2021/101/	WV01_10200100AF43E	100_P1B5_505309733010	_01/WV01 W	/01	1,
28	10920338 {	5A1C8102-7 W	V01_1020(WV01_2	2008 validated	v1 102001000	04:05280	046330 P18	S YY		Panchromati 20	08-09-26T	0.201	57.1872098	-170.27803	35840	35840	0 16	6 NITE	14.9	30.9	0.532	83	11.3 WV	V01_2008	l/css/nga/W\	/01/18/2008/270/	WV01_1020010004895	200_X1B5_052804633030	01/WV01 W	/01	1
29	10795518 {4	4D22F830-6 W	V01_1020(WV01_2	2008(validated_	v1 102001000	03:05280	045950: P1B	S YY		Panchromati 20	08-08-27T	0.028	57.187699	-170.27927	34816	35840	0 16	6 NITF	16.2	41.8	0.539	83	10.4 WV	V01_2008	/css/nga/W\	/01/18/2008/240/	WV01_10200100033D1	500_X1BS_052804595030	_01/WV01 W	/01	1,
30	7275505 {8	E1439B15-B W	V01_1020(WV01_2	2011(validated_	v1 102001001	14,05280	050300: P1B	S YY		Panchromati 20	11-08-04T	0.058	57.1436117	-170.30896	35840	35840	0 16	6 NITF	15.1	49.9	0.535	83	-12 WV	V01_2011	(/css/nga/W\	/01/18/2011/216/	WV01_1020010014A28	500_X1BS_052805030020	_01/WV01 W	/01	1,
31	13897911 {	1DD98515-F W	V01_1020(WV01_2	2010 validated_	v1 102001000	OD 05280	046441(P1B	S YY		Panchromati 20	10-03-24T	0	57.1461704	-170.30076	32768	35840	0 16	6 NITF	23.3	34.6	0.584	83	-20.6 WV	V01_2010	(/css/nga/W\	/01/18/2010/083/	WV01_102001000D63E	000_X1BS_052804644100	_01/WV01 W	/01	1,
32	15063037 {1	1D5D65F4-8 W	V02_1030(WV02_2	2014(validated_	v1 103001003	33 50543	392940! M18	S US		Multispectra 20 Danshromati 20	14-06-19T	0.07	57.1490684	-170.29287	9216	6144	4 16	6 NITE	40.4	56.2	3.163	83	-39.9 WV	V02_2014	l/css/nga/W\	/02/18/2014/170/	WV02_10300100337DF	300_M1BS_50543929409	0_01/WV0 W	/02	8,
34	11175110 (8	FA556D53-FG	02_1030 00002_2	0120 validated	v1 105001003	03:05401	192140: P1B	5 US 5 YY		Panchromati 20	12-02-06T	0.005	57.2048237	-170.35898	28672	37889	8 16	6 NITE	21.9	17	0.473	83	-35.5 WV	01 20120	/css/nga/GF	01/18/2012/037/6	F01 105041000320100	0 X1BS 054019214030	01/GF01 2 GF	01	1
35	11064874 {	FA454630-A G	01_10504 GE01_2	0120 validated	v1 105041000	03:05401	192140: M18	IS YY		Multispectra 20	12-02-06T	0	57.2048237	-170.35899	7168	10240	0 16	6 NITF	21.9	17	1.893	83	-21.4 GE	01_20120	/css/nga/GE	01/1B/2012/037/G	E01_1050410003201C0	0_X1BS_054019214030_	01/GE01_2 GE	01	4 ,
36	3903292 {[D59A6E5E-C W	V01_1020 WV01_2	2008: validated_	v1 102001000	04 05280	046030! P1B	5 YY		Panchromati 20	08-11-08T	0.11	57.1940991	-170.27939	33792	35840	0 16	6 NITF	23.7	15.8	0.585	83	20 WV	V01_2008	css/nga/W	/01/18/2008/313/	WV01_1020010004799	00_X1BS_052804603090	_01/WV01 W	/01	1,
37	11314006 {(0FE22D15-E W	V01_1020 WV01_2	2009(validated_	v1 1.02E+1	15 05280	0465501 P1B	S YY		Panchromati 20	09-03-19T	0	57.2061972	-170.30722	35840	35840	0 16	6 NITF	13.9	32.4	0.529	83	-13.8 WV	V01_2009	/css/nga/W\	/01/18/2009/078/	WV01_1020010006273	200_X1BS_052804655080	_01/WV01 W	/01	1,
38	3122702 {5	5D44C0F2-E W	V02_1030(WV02_2	2021(validated_	v1 103001008	BB 50531	158850 P18	5 US		Panchromati 20	21-03-09T	0	57.1445548	-170.28494	35840	34816	6 16	6 NITE	4	28.1	0.47	83	2.6 WV	V02_2021	(/css/nga/W\	/02/18/2021/068/	VV02_10300100BB00B	500_P1BS_50531588507	0_01/WV02W	/02	1,
40	15459515 {	A1474941-6 W D7RDA4A4- W	V02_1030(WV02_2 V01_1020(WV01_2	2021(validated_	v1 103001008	001 50584	158850 MIE 160041(P1B)	5 US		Panchromati 20	21-03-091 10-02-27T	0.04	57.2132425	-170.31276	35840	31744	6 16 4 16	6 NITE	17.2	28.1	0.543	83	2.6 WV	V02_2021	(/css/nga/W\ /css/nga/W\	/02/18/2021/068/	VV02_1030010088008	500_M185_5053158850	0_01/WV01W	/02	8,
41	11418795 {0	C1C8F2E1-1 W	V01 1020 WV01 2	2009: validated	v1 102001000	0A 05280	046340: P18	5 YY		Panchromati 20	09-10-31T	0.022	57.2023172	-170.38846	35840	35840	0 16	6 NITF	6.4	18.6	0.51	83	4.4 WV	V01 2009	/css/nga/W\	/01/18/2009/304/	WV01_102001000A747	100 X1BS 05280463403	01/WV01 W	/01	1
42	7539449 {	94D0EBC8-EW	V01_1020 WV01_2	2015(validated_	v1 102001003	3A 50031	128430: P18	S YY		Panchromati 20	15-02-24T	0	57.2112606	-170.36574	30720	35840	0 16	6 NITF	20.2	23.7	0.563	83	-8.5 WV	v01_2015	/css/nga/W\	/01/1B/2015/055/	WV01_102001003A46A	200_X1BS_50031284303	_01/WV01W	/01	1 ,
43	5974592 {	5FA15EEC-8 W	V02_1030(WV02_2	2013(validated_	v1 103001002	20! 50006	592401! P1B	S YY		Panchromati 20	13-04-08T	0.052	57.1358558	-170.29911	25600	35840	0 16	6 NITF	34.9	40.5	0.678	83	-34.9 WV	V02_2013	l/css/nga/W\	/02/1B/2013/098/	WV02_1030010020587	COO_X1BS_500069240150	_01/WV02 W	/02	1 /
44	5947698 {	3D0FB4B4-8 W	V02_1030(WV02_2	2013(validated_	v1 103001002	20! 50006	592401! M1B	S YY		Multispectra 20	13-04-08T	0.052	57.1358462	-170.29902	7168	9216	6 16	6 NITF	34.9	40.5	2.711	83	-34.9 WV	V02_2013	l/css/nga/W\	/02/1B/2013/098/	WV02_10300100205870	C00_X1BS_500069240150	_01/WV02 W	/02	8 /
45	24679390 {4	4A7311A8-E W	V03_1040(WV03_2	2016(validated_	v1 104001001	17 50322	230910: P18: 230910: M18	5 US		Panchromati 20 Multispectra 20	16-02-06T	0.376	57.1310993	-170.34588	43008	35840	0 16 6 16	6 NITE	25.7	17.4	0.372	83	-23.1 WV	V03_2016	/css/nga/W\ //css/nga/W\	/03/18/2016/037/ /03/18/2016/037/	WV03_1040010017CCF: WV03_1040010017CCF:	100_P1B5_503223091020	_01/WV03 W	/03	1/
40	22844726 {	EE14621D-9 W	V01 1020 WV01 2	2022(pending	102001001	C8 50676	537170 P1B	5 US		Panchromati 20	22-08-09T	0.375	57.1484317	-170.26771	35840	30720	0 16	6 NITF	25.4	41.1	0.5	83	-20.2 WV	V01 2022	/css/nga/WV	/01/18/2022/221/	WV01 102001001700F	A00 P1BS 50676371705	0 01/WV01W	/01	1
48	20428737 {0	C96D0549-2 W	V01_1020 WV01_2	2022(validated_	v1 10200100B	BD 50616	530480 P18	5 US		Panchromati 20	22-01-25T	0.051	57.2062155	-170.28128	35840	32768	8 16	6 NITF	18.3	9.1	0.553	83	-16.2 WV	V01_2022	css/nga/WV	/01/18/2022/025/	WV01_10200100BD27A	800_P1BS_50616304809	0_01/WV01W	/01	1
49	18964117 {2	2DF85A94-F W	V01_1020 WV01_2	2019(validated_	v1 102001008	87! 50584	461830 P18	S US		Panchromati 20	19-05-04T	0.294	57.2041394	-170.27613	35840	32768	8 16	6 NITF	21.1	39.9	0.565	83	-20.5 WV	V01_2019	/css/nga/W\	/01/18/2019/124/	WV01_10200100875A8	000_P1BS_505846183040	_01/WV01 W	/01	1 ,
50	26316127 {0	0F1028DF-0 W	V02_1030(WV02_2	2014(validated_	v1 103001003	33(50540	057381(P1B	S US		Panchromati 20	14-06-19T	0.083	57.1359239	-170.28903	35840	22528	8 16	6 NITF	45.5	56.2	0.925	83	-40.1 WV	V02_2014	/css/nga/W\	/02/18/2014/170/	WV02_10300100336F80	000_P1BS_505405738100	_01/WV02 W	/02	1,
51	26316124 {6	6605886B-2 W	V02_1030(WV02_2	2014(validated_	v1 103001003	33(50540	057381(M18	IS US		Multispectra 20	14-06-19T	0.083	57.1358725	-170.28891	9216	6144	4 16		45.5	56.2	3.702	83	-40.1 WV	V02_2014	/css/nga/W\	/02/1B/2014/170/	WV02_10300100336F80	00_M1BS_50540573810	0_01/WV0:W	/02	8,
52	11621169 (283FFF01-1 W	V01_1020(WV01_2	2022(validated_	v1 10200100C	13,05280	0500801 P18	5 US 5 VV		Panchromati 20	22-05-161 11-05-11T	0	57.2158281	-170.2984	32768	35840	2 1t 0 16	6 NITE	12.8	43.5	0.52/	83	-12.5 WV	V01_2022	(/css/nga/W\	/01/18/2022/136/	WV01_10200100C4921	400_F185_506451962030 400_X185_052805008080	01/WV01W	/01	1/
54	17372400 {3	311410B9-6 Q	302 10100 OB02 2	0051 validated	v1 1.01E+1	15 50585	551790 P18	s US		Panchromati 20	05-10-12T	0.357	57.1943002	-170.26116	27648	29696	6 16	6 NITF	7.8	25.3	0.622	83	-7.1 QB	02 20051	1/css/nga/QB	02/1B/2005/285/0	802 101001000494900	00 P1BS 505855179070	01/QB02 2 QB	02	1
	▶ Foo	otprints (1)	+																												
	e e el con					_					_													_					-		10001

NASA Center for Climate Simulation – https://www.nccs.nasa.gov

• With Advanced Search, specify search parameters (sensor, cloudcover, etc.) and export the resulting footprint feature class

