
above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: VM sizing
and Batch Processing

Mark Carroll

Hoot Thompson

Garrison Vaughan

Scott Sinno

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Assumptions

• User has a need to process a large volume of
data

• User intends to run in the Linux operating
system primarily from a terminal window

• User has a working knowledge of:

– The linux/unix operating system

– Some scripting language (shell, perl, python, etc)

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Resources
• There are currently ~100 physical nodes

– Each physical node has:

• 24 processors with 64 GB RAM

• There is 1 Petabyte of storage allocated to ABoVE

– 50% currently in use for static/archived data products
(such as Landsat surface reflectance) and scratch
space allocations

– Each user has 5.5 TB allocation in their “nobackup”
space to use as scratch space

• Additional space can be made available as needed

• Request for additional space vetted through ABoVE project
office

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: VM allocation

• Virtual machines (VMs)are created from the
physical nodes described earlier

• Max configuration is ~10 % less than the size
of a physical node
– Some space on the physical node is required to

keep it running

• Total number of possible VMs is limited by the
configuration of the VM itself divided by the
total number of physical nodes available
– Some physical nodes will already be actively in use

by other VMs

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: VM sizing
• Base configuration is small: 2 CPUs with 10GB RAM

• Required software is built-in to the configuration of
the VM
– hdf libraries, python, perl, gdal, R, QGIS, etc. are identified

as required components when the VM is initially
configured
• If you need specific packages for software like R you need to

request that be part of the configuration

• Proprietary software can be installed but consideration has to be
given to where the licenses will come from and how they can be
distributed in a multi-system (cloud) environment

– Realistically it could take several iterations to configure
the VM to emulate the environment you may be used to

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: VM sizing
• Process for building VM cluster

Sketch out
overall goals: “I
need to process
10 years of 3
path/rows of
Landsat data”

Move code over (or
write code) to test
VM

Adjust for paths etc.

Test

Identify any missing
components of
software/packages

Iterate

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Batch testing
• Once your code runs, you need to get some

timing metrics so you can optimize

• Define your minimum processing unit
– Do you need to process a tile through time or do you

need to process all tiles for a single time before
moving forward?

• How long does it take to process 1 unit?

• Can you process more than 1 unit
simultaneously?
– Of particular interest here is if you use temporary files

you need to ensure that you aren’t inadvertently
overwriting them

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Batch testing

• Total processing time = total number of
processing units X processing time per unit

– This gives you the length of time needed to
process on a single machine

• How soon do you need your results?

– If you are able to spread over 10 machines, it will
be done 10 times sooner…

• You need to invest time up front to figure out
how to implement your code in the cloud and
get the most out of it!

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Tools for
timing/monitoring processes

• Timing your run can be as simple as using the
“date” command or “time” command
– date; sh myshellscript.sh; date> textfile.txt
– time; sh myshellscript.sh

• Launching processes across all machines can be
done with
– pupsh or ppdsh

• pupsh "hostname ~ 'condjess[0-9]'" "perl <full path>/file.pl"

• Monitoring processes on your cluster of VMs can
be done through “Ganglia”
– https://internal.nccs.nasa.gov/internal/monitoring/ds

c/ganglia-test/

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Misc.
• Ganglia access requires your token (In spite of what the

login screen says about smart card access)

• Use screen or nohup to launch jobs
– Jobs will stop if your terminal session ends otherwise

• Use hostname to get unique identifiers for temp files
– Perl

• $host=`/bin/hostname`;#identify the hostname of the machine
you are running on

• $nid=substr($host,8,2);#capture the 2 digit "ID" of the hostname

– bash
• host=`/bin/hostname`

• nid=`/bin/hostname -s | /usr/bin/rev | sed -e 's/[[:alpha:]].*//' |
rev`

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Misc.
• Remember there are interdependencies between

software
– Python and R both bind to gdal

• Sometimes this causes conflicts and version dependencies

• System related questions should go to
support@nccs.nasa.gov
– Access to system, installation of software, VM is

running out of memory

• Coding/software questions should be addressed
with your peers
– How do I do ____ in R?
– How do I build a nested for loop in bash?

mailto:support@nccs.nasa.gov

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Ganglia

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Ganglia

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Ganglia

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Ganglia

above.nasa.gov @NASA_ABoVE

ABoVE Science Cloud: Summary

• ADAPT is a large processing resource available to
ABoVE scientists

• Can be an effective tool for processing large volumes
of data

• Users need to allocate time up front to get their VM
configuration right and to optimize their code for
distribution or parallelization

• Admins are there to administer the system but they
do not use science software so they cannot help with
debugging scripts

