

Knowledge Sharing Seminar: Monitoring Wetland Extent with Satellites Presenters: Nancy HF French, PhD Michael Battaglia Michael Merchant

Dana Redhuis

Michigan Tech Research Institute Ducks Unlimited Canada NASA Jet Propulsion Lab Collaborators: Environment Canada, Wilfrid Laurier University

November 29, December 1, and December 19, 2023 A NASA ABoVE Funded Project

all and a second strand of the local ball and the second of the ball and and and an and the bash and a bash and the bash

Agenda

- Introduction & Goals for Seminar
- Review of Project
 - What we've done and where we're going
 - What we need from you
- Intro to Satellite Earth Observation and **Remote Sensing**
- Wetland products developed
- **Applications of ABoVE Products using Remote Sensing Methods**
- Next Steps
 - Project Activities Going Forward
 - Opportunities for In-Field Validation
- Questions and Brainstorming session learn from you what will be valuable

Fieldwork near Fort Resolution, 2019

ver a uniter with her still the set do the ball with the state of the

Goals for Seminar

- Review the project and products developed by this research
- Identify the value of wetland maps for communities and decision-makers
 - For example: fish
 habitat, water level
 maps, others.

and a superior in the second second second second with the second s

Vulnerability and Resilience Framework

CAUSES OF CHANGE

Many factors from the local, to regional, to global scales drive changes to ecosystems. Examples include: natural disturbances such as fires and insects; and increasing temperature and CO₂.

CHANGES TO ECOSYSTEMS

Ecosystem structure and function are impacted by drivers that are both external (e.g., climate, invasive sprecies) and internal (e.g., fire, animal disease, mining, infrastructure).

DRIVERS

SECONENCES

REFONSES

ECOSYSTEM SERVICES

Ecosystem services are the benefits and value that people derive from the environment that sustains us. Examples include: food and freshwater production and indigenous wildlife harvest.

SOCIAL SYSTEMS

People respond to these changes in many ways. Individuals and households may change their behavior, for example relying more heavily on store-bought food than subsistence hunting.

Scaling Observations from Leaf to Orbit

Presenter Introductions

Michael Merchant Remote Sensing & Scientist - DUC

Mike Battaglia Research Scientist MTRI

Dana Redhuis Research Scientist MTRI Nancy French Senior Scientist & Fellow MTRI

مستعاد المراجع والمراجع المراجع والمراجع ومناجع والمراجع المراجع والمراجع والم

Project Team

Michigan Tech Research Institute

Nancy HF French, Michael Battaglia, Dana Redhuis, Alicia Sendrowski, Jeremy Graham,

Dorthea VanderBilt, Laura Bourgeau-Chavez

Ducks Unlimited Canada

Michael Merchant, Vanessa Harriman, Stuart Slattery, Rebecca Edwards,

Sonny Lenoir

NASA Jet Propulsion Lab

Bruce Chapman

Collaborators:

Christopher Spence, Environment Canada; Jennifer Baltzer, Wilfrid Laurier University

Project Results to Date

"What We've Done"

Demonstrated use of remote sensing, <u>focused on the use of</u> <u>Synthetic Aperture Radar (SAR)</u>, to improve modeling of wetland habitat change and waterfowl distribution in the Peace-Athabasca and Slave River Deltas

Outcomes:

- Map wetland type
 decadal changes in wetlands for the two demonstration regions
- Map vegetation flooding
 inundation/flooding status, wetland hydroperiod, wetland flooding dynamics
- Demonstrate waterfowl abundance modeling and mapping using the wetland products
- Initial development of NASA wetland dynamics products

Next Steps: "Where We're Going"

Improve access for interested communities* to wetland change information for informed management and use of wetlands

*decision-makers, subsistence hunters, scientists, and researchers

Open water

Marsh Fen Bog

Swamp Upland Burn

ABoVE Extended Domain

Areas in northern Canada with existing high-quality wetland maps

a prover specific deep to the work fill be had all been as the new of the task of a bear defined to

Community Needs and Questions "What we need from you"

- What is the issue in water resource management that you are interested in improving? What is the temporal/spatial scale needed?
- What are the gaps in your ability to monitor and manage wetlands?
- What wetland information would be valuable to you/your organization?
- What would you use these maps for?

2018 PAD Seasonal Inundation Composite Map

we dit the att a the set of the sector of the day of the day be dealed by the sector of the sector of the sector

Intro to Satellite Earth Observation and Remote Sensing

Michael Battaglia, MTRI

Intro to Satellite Earth Observation as a Resource for Mapping

. What is **REMOTE SENSING**?

• "Remote Sensing is the science and art of **obtaining info about an object**, area, or phenomenon through the analysis of data acquired **by a device that is not in contact with the object**, area or phenomenon under investigation"

-[Remote Sensing and Image Interpretation, Lillesand et al. 2004]

we dill the arts hill be had be been been and be and a branching any the day had been and

• Two types of Remote Sensing: <u>PASSIVE</u> and <u>ACTIVE</u>

Intro to Satellite Earth Observation as a Resource for Mapping

What is **ACTIVE** remote sensing?

- Active sensors provide their own energy to illuminate the object or scene they observe. They send a pulse of energy from the sensor to the object, and then receive the radiation that is reflected back.
- Synthetic Aperture Radar (SAR) is a type of active data collection where a sensor produces its own energy and then records the amount of that energy reflected back after interacting with the Earth.

What is **PASSIVE** Remote Sensing?

- Passive sensors detect radiation emitted or reflected by an object from a source other than the instrument, i.e. the sun
- Satellite imagery, such as multispectral or hyperspectral data, is a form of passive remote sensing

How Imaging Radar works

Radar

Radars are active Sensors that Transmit Microwave Radiation in Pulses then record Backscattered Energy

Points on the ground scatter back to the radar when the pulse reaches them => points at different ranges return at different times.

Radar transmits pulses of some width in time, T_p , that defines "packets" of energy that propagate to the ground (assume monochromatic pulse)

All the points on the ground within a single pulse come back to the sensor together, thus they can not be distinguished = range resolution = $cT_n/2$

Ground Plane

Radiation spreads outward from

the antenna like an expanding

balloon at the speed of light, c

Range .

Directior

Radiation is concentrated within an arc defined as the elevation beamwidth, $\beta_r = \lambda/d_r$ λ =radar wavelength

How Backscatter works

Examples of Radar Interaction

SMAP Radar Mosaic of the Amazon Basin April 2015 (L-band, HH, 3 km)

Wetland Products Developed

Mapping Wetland Type and Extent: Critical for Waterfowl Habitat

Wetland type maps created using a machine learning approach with Landsat and L-band SAR to assess changes in duck habitat.

والمراجع والمحمد المحمد المراجع والمراجع والمراجع والمحمد والمراجع والمراجع والمراجع والمراجع والمراجع

SAR-derived 3-year annual inundation composite.

"What we've done" Wetlands and Radar

Mapping Methods used successfully to map wetlands in the Great Lakes, tropics, and boreal region

- Landsat and PALSAR multi-date imagery
- Image classification (Random Forests) is trained and validated with field-data and aerial-image interpretation of the wetland types
- Outputs heavily dependent on quality input data

processing the partic ward will be had been and the processing by the same had been been been and the second second

Wetland Mapping

Summary & Accuracy

Slave River Delta (SRD) 2007: 11,789 km^{2,} 83.4% accuracy 2017: 4,762 km^{2,} 86.5% accuracy

Peace Athabasca Delta (PAD) 2007: 14,247 km², 96.8 % accuracy

2017: 6,985 km^{2,} 97.8% accuracy

Bove

Michigen Tech Research Institute . Ducks Unlimited Canada

- Using Satellite Radar Images (Sentinel-1)
- Products developed:
- Single-date inundation/flooding status
- 2. Seasonal flooding composite map (hydroperiod): number of times flooded in a season
- 3. Annual flooding average and variation of flooding from year to year

and and a second strain and a strain of the second of the state of the balance of the second all a second strain of the second strain of the

Products developed:

Single-date
 inundation/flooded
 vegetation

Can be used for matching to specific days or weeks

Products developed:

- 2. Seasonal vegetation flooding composite map (hydroperiod): number of times flooding in a season
- Can be assessed for seasonality and persistence

the best to the state of the ball of the ball

Products developed:

- 3. Annual floodedvegetation:average and changefrom year to year
- Can be used to understand dynamics from year to year and identify highly dynamic sites

was a with the first was been ball but ball which a stranger big that and a back of a back of the first

Red=2017 Green = 2018 **Blue** = 2019

Applications of ABoVE Products using Remote Sensing Methods

Michael Merchant, DUC

Waterfowl Abundance Modelling

investigation all he still down the life has he had been as the same as the her has he had been and the state h

Others Applications of Wetland Maps by DUC

a stand as an about the prost and the first the first of the ball of the ball

Ducks Unlimited

Canada

Research Institute

BOVE NASA

NISAR Wetland Flooding

Michigen Tech Research Institute Ducks Unlimited Canada

(NASA-ISRO Synthetic Aperture Radar Satellite)

What we've done

→ Collected Airborne (UAVSAR) images to support Satellite (NISAR) product development

the still the ath fill and sale built of statements the sale dealers big and the state of the

Where we're going:

- NISAR-mapped wetland flooding
 - Satellite will launch in early 2024, first global acquisitions around <u>July 2024</u>.
 - Validate open water and inundated vegetation extent over <u>selected validation sites</u>.
 - Compare with other products, such as OPERA DSWx-HLS and DSWx-S1, UAVSAR polarimetric data.

NISAR Wetland Inundation

Peace-Athabasca Delta June 13, 2017

> NISAR-like HH image from UAVSAR

- UAVSAR is NASA's airborne L-band SAR
- Currently making simulated NISAR products from UAVSAR data collected by ABoVE

Classification inundation extent from quad pol UAVSAR

- Perform polarimetric decomposition to estimate ground scattering behaviour
- Classify results based on expected scattering behavior

in inversion distantic marking for the back of the back of the second states and a second second second second

NASA-JPL OPERA products

(Observational Products for End-Users from Remote Sensing Analysis)

Examples of New Products

We used a version of our technique for identifying wetland dynamics to detect ice-off in small lakes

→ a factor in determining when migratory birds will begin to arrive in the north

Dettah, August 2021

Dettah, August 2022

Next Steps

Project Goals Going Forward

Michigan Tech Research Institute Ducks Unlimited Canada

- Review with communities the products developed by this research.
- Work with
 communities to find
 best products for
 decision-support and
 other uses.

and an annual and the formation of the state of the state ball of the ball of the state of the

Opportunities for Field-Checking of Maps (Validation)

As we produce wetland products, it is important that we are in the field to help create accurate and valuable products by:

- Observing and measuring key characteristics in the field
- Field-checking the maps and products created

Challenges to data product validation

- Acquiring enough site-representative data
- Working in remote areas

DUC and MTRI hope to work with local communities for field validation

 Indigenous Guardians Program: Supports Indigenous rights and responsibilities in protecting and conserving ecosystems

In-Person Workshops

- DUC and MTRI hope to work with local communities to build in-person data collaboration and collection workshops
- Goals:
 - Validate existing datasets
 - Continue building a collaboration network
 - Provide learning opportunities

Fieldwork near Fort Resolution, 2019

Ducks Unlimited

Community Needs and Questions

- What is the issue in your water resource management that you are interested in improving? What is the temporal/spatial scale needed?
- What are the gaps in your ability to monitor and manage wetlands?
- What wetland information would be valuable to you/your organization?
- <u>Submit your contact information</u>

Ducks Unlimit

2018 PAD Seasonal Inundation Composite Map

Contact Us

Nancy French - <u>nhfrench@mtu.edu</u>

Michael Battaglia - mjbattag@mtu.edu

Michael Merchant - <u>m_merchant@ducks.ca</u>

Dana Redhuis - <u>dnvanhui@mtu.edu</u>

Contact Information Form

All data, products, and algorithms produced will be freely available for download. Current data products from the ABoVE project are available from the NASA ABoVE data site -**ORNL-DAAC:** https://daac.ornl.gov/cgi-bin/dat aset lister.pl?p=34

